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Abstract. Finding the salient features of an image is required by many appli-
cations such as image re-targeting, automatic cropping, object tracking, video
encoding, and selective sharpening. In this paper we present a novel method for
detection of salient objects' edges which combines local and regional consider-
ations. Our method uses multiple levels of detail, and does not favor one level
over another as done in other multi-scale methods. The proposed local-regional
multi-level approach detects edges of salient objects and can handle highly tex-
tured images, while maintaining a low computational cost. We show empirically
that these are useful for improving image abstraction results. We further provide
qualitative results together with quantitative evaluation which shows that the pro-
posed method outperforms previous work on saliency detection.
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1 Introduction

Images contain large amounts of visual information, and the human visual system usu-
ally focuses on certain parts of the image which are considered to be more important.
Many applications rely on recovering these salient regions of the image, for example,
image re-targeting, automatic cropping, video encoding and more. Other application
such as selective sharping, video abstraction, and object recognition, depend on the re-
covery of boundaries of salient objects, in order to emphasize or track only these edges.
In this paper we present a novel approach for the detection of salient edges.

In recent years, several methods were developed for visual saliency estimation,
which can be divided into two main approaches, bottom-up saliency and top-down
saliency. Bottom-up saliency models [1�5] �rst extract low level visual features and
then compute saliency models using these features. The methods of [1],[2],[3], were in-
spired by the human visual system, to extract low level features and aggregate them into
salient regions. Since they do not incorporate global considerations explicitly they of-
ten detect non-interesting background texture as salient (see Fig. 1(d) and Fig. 2(b)(c)).
In [4] coarse global information was merged hence their �nal saliency maps lack �ne
details, and often miss parts of the salient objects. The method of [5], detects global
saliency by identifying image regions which imply unusual frequencies in the Fourier
domain. This method does not rely on parameters and detects saliency extremely fast.
However, since it does not consider local saliency the results are coarse and many �ne
details are missed (see Fig.1(c)).



(a) Input (b) Human Label (c) Global [5]

(d) Local [1] (e) Our salient edges (f) Our smooth
saliency map

Fig. 1. Global methods are too coarse while local methods detect background texture
as salient. Our multi-level approach which uni�es local and regional saliency detects
only the edges of the salient objects. The human label was taken from [5], where the
image was labeled by four subjects. In the labeled map, the white region represents
salient region; the black region represents the non-salient region, and the gray region
was selected by some labelers but rejected by others.

Top-down models are task driven and involve high level information. Saliency mod-
els combining top-down and bottom-up were used in [6�8]. The global saliency mea-
sure of [6] detects the single most salient rectangular region in the image. When the
objects are not rectangular, this coarse analysis leads to inaccurate detections. In [7]
a robust method combined local, global and high level considerations explicitly. This
combination was shown in [7] to be highly successful, however, their approach aims at
recovering part of the background as salient and not only the dominant objects. Judd et
al. [8] successfully trained a bottom-up top-down model based on low, mid, and high-
level features. However, these top-down bottom-up methods are highly computational.
In addition, none of the above methods extracts salient edges. Our approach integrates
multi-level local saliency with multi-level regional saliency and provides an accurate
map of only the edges of salient objects.

In this paper we present a multi-level method for extracting edges of salient objects.
Our method combines low level local and global considerations, and unlike other multi-
scale methods, we do not favor one level over another. We combine information from all
resolution levels of the image, in order to form a robust and fast method for generating a
map of salient edges. To compute salient edges at multiple levels we adopt the Beltrami
operator [10] which provides multiple resolutions while maintaining edge information.
We further incorporate a multi-level regional analysis which detects regionally salient
objects. Merging the explicit regional component, with the multi-scale local detection,
yields detailed detection of the globally salient edges. For applications which require a
saliency map rather than salient edges, we locally smooth the result around the detected



(a) Input (b) Saliency of [2] (c) Saliency of [1] (d) Saliency of [9] (e) Salient Edges

Fig. 2. Saliency results of different algorithms on images obtained from [9].

edges. An example result of our method compared with other algorithms is given in
Fig. 1,2. Fig.1 (e)(f), shows our saliency map which demonstrates only the bird's edges,
while the details are maintained. In Fig.2 (e) we detect all the outlines of the salient
objects while all other methods show a blurry map. Some show background regions as
salient (Fig.2 (c)(d)), while others miss some salient regions (Fig. 2(b)) and none show
salient edges.

We propose a local measure of saliency based on a multi-level extension of [11].
There, it was shown that the inverse transform of the phase of the input image, provides
a high quality saliency map which is fast to compute and does not require any parameter
tuning. In [11] the input image is re-scaled a-priori to a pre-determined �xed resolution.
Since every resolution has different edge information, some unimportant structures are
detected as salient while other salient structures are often missed by this approach.
A hierarchical multi-resolution extension of [11] was presented in [9]. There, three
resolutions are used in a coarse to �ne manner. A salient region found at the coarsest
level, is then explored by the �ner levels in order to sub-divide it into separate objects.
However, regions not detected by the coarsest level (such as small objects), cannot be
found at the �ner resolutions. Results for this method are shown in Fig. 2(d), where
the �nal saliency map is blurry and detects background as salient. Instead, we propose
here an approach which combines information from multiple levels, without giving
preference to any particular scale, in order to recover a map of salient edges.

We further propose a multi-level regional saliency measure which identi�es globally
salient regions. The proposed measure can handle objects of any shape and size. As in
the local measure, we make sure that our algorithm maintains a low computational cost.
Hence, the complexity of our overall algorithm remains linear in the number of pixels.

The rest of the paper is organized as follows: In section 2 we provide a detailed
review of the related previous work, describe the two stages of our algorithm and how
they are combined into a single saliency map. In section 3 we demonstrate how to use
the edges recovered by our saliency map together with a video abstraction application,
for enhancing the abstraction results. In section 4 we demonstrate our visual results and
present a quantitative comparison with other algorithms using the databases of [1] and
[5]. Finally, we conclude in section 5.



Input image 256× 256 64× 64

Fig. 3. Results of [11] using different resolutions of the image proposed in [9]. The
original resolution of the image is 1000 × 800. The people marked by the red ellipse
are not detected as salient in the coarse scale.

2 The algorithm

2.1 Main concepts

We follow three main principles. The �rst, is that a good saliency algorithm needs to be
based on all resolution levels of the image. A single level of the image does not contain
all the data necessary for saliency detection. Second, we believe that no level is more
important than others. Unlike other multi-scale algorithms, we treat all image levels
equally, and �nd a solution which accounts for all of them. By using multiple levels
we implicitly incorporate local and global saliency. Finally, the third principle states
that one needs to consider both local and global saliency explicitly. Hence, we further
propose a multi-scale regional analysis which captures global saliency explicitly.

Our algorithm, therefore, unites two parts, local and regional. The local stage ex-
tends [11] where only a single resolution level of the image was processed. Using a
single scale, regions which locally have high-contrast changes may appear as salient
even though they are in fact part of a larger texture. When inspecting different levels of
detail, different objects appear as salient in the different levels. Fig. 3 shows results of
the saliency algorithm of [11] applied to different resolutions of the same image. The
different resolutions result in different saliency maps. In [9] a multi-scale extension of
[11] is proposed. However, in their approach an object not detected in the coarsest res-
olution would be lost in the coarse-to-�ne approach proposed in [9]. For example in
Fig. 3, some of the people in the water appear as salient in the higher resolution but
not in the lower resolution. We propose a different extension of [11] where we search
for saliency in all the image levels, taking them all into account in a uni�ed solution.
Furthermore, rather than using a smoothing Gaussian kernel to obtain multiple image
resolutions, we use the Beltrami operator which maintains the image details.

The second part of our algorithm consists of a regional analysis. Locally, a point
can be regarded as salient since it is part of an edge in all levels of the image. Region-
ally, this point may actually be a part of a larger texture. In order to avoid detecting
textured background as salient, we add a regional stage which inspects each region in
the image in comparison with its neighborhood. Again, since the characteristic length
scale of the texture may vary, we explore regions of various sizes. Then, we generate a
saliency map which is composed of the analysis of all region sizes together. Finally, we



de�ne saliency in locations which are salient both locally and regionally, generating a
map of salient edges that combines the information produced by the local and regional
algorithm. Together, these steps provide an ef�cient and reliable saliency algorithm.

2.2 Reviewing Phase Based Saliency of [11]

We start by reviewing the algorithm proposed in [11] for phase-based saliency com-
putation at a single scale. We modify the notation of [11] slightly since we currently
handle only single images rather than video frames.

Let r, g, and b be the red green and blue channels of the input image, respectively.
Three channels, RG BY I , are de�ned to be used in the Quaternion Fourier transform.

RG = 1.5 (r − g) (1)
BY = b− r + b− g + |r − g|/2 (2)

I = (r + g + b) /3 (3)

RG is a red green channel, and BY is a blue yellow channel, designated to match the
color pairs which exist in the visual cortex of the human brain. I is the intensity channel.
These channels are represented as a quaternion image as follows:

q = RGµ1 + BY µ2 + Iµ3, (4)

where µi∀i = 1, 2, 3 satis�es µ2
i = −1, µ1⊥µ2, µ3⊥µ2, µ3⊥µ1, µ3 = µ1µ2.

A Quaternion Fourier transform [12] is applied to q. The magnitude of the Fourier
transform is set to 1, and an inverse Quaternion Fourier transform is computed:

q′ = F−1

{
F{q}
‖F{q}‖

}
. (5)

According to [11], the saliency map is expressed as follows:

Slsingle−level = g ∗ ‖q′‖2 (6)

where g is a 2D Gaussian �lter (we use 7 pixels wide with σ = 3). Since ‖q′‖ is actually
an image with high values at the edges of objects and low values everywhere else, the
purpose of applying g is to smooth these edges, thus �lling objects in the saliency map.
In [11] the resolution of all input images is reduced to 64 × 64 prior to computing the
saliency map. These maps are later re-scaled to the original size of the input image.

The bene�t of this method is that it is a fast and simple way to get a saliency map
of an image, but it also has some �aws. Reducing the size of every image to 64 × 64
regardless of the original image size, removes some textures from the image - thus
helping the saliency map accentuate relatively large objects in the image. However, it
may lose important data as well. Small objects, which are sometimes unique, might
also be removed by this down-scaling. As can be seen in Fig. 3, when using the high
resolution all the details of the raft and the people in the water are detected, while at
the lowest resolution some of the swimmers are removed from the saliency map and the
entire map is blurred and inaccurate.



(a) Input (b) After (c) After (d) Saliency (e) Saliency
Gaussian �ltering Beltrami �ltering of (b) of (c)

Fig. 4. The hikers are not detected as salient in (d) since Gaussian smoothing blurs
edges. They are detected in (e) since anisotropic �ltering preserves the edges.

Fig. 5. Top: different detail levels of an image. Bottom: saliency results on the different
image levels show that each captures different features.

2.3 Multi Level Phase Based Saliency

The common approach to multi-scale uses a Gaussian pyramid. The Gaussian smooth-
ing process smears edges, hence, it is not well suited for saliency detection. This is
illustrated in Fig. 4(b) which shows how Gaussian smoothing blurs the non-interesting
texture in the trees as well as the salient people hiking in the snow. Instead we use the
anisotropic diffusion proposed in [10] (see Fig. 4(c)). To avoid artifacts we do not down-
sample the image. Instead we obtain multiple levels of detail by applying the Beltrami
�ow of [10] with different smoothing levels. Each level has a different smoothness level,
therefore less texture is shown as the smoothing proceeds. Objects in high contrast with
their background maintain their edges, while their inner parts are smoothed. In addi-
tion, textures such as fur and grass are smoothed more and more as we apply more
iterations of the Beltrami �ow. This process is an edge-preserving smoothing which
tends to eliminate textures whilst retaining sharp edges (see Fig.4(c)). Fig. 4 further
compares the saliency results of Eq.(6) when applied to the Gaussian smoothed image
of Fig. 4(b) and the anisotropic diffused image of Fig.4(c). The people in the image are



nearly lost in Fig. 4(d) since Gaussian smoothing was applied. Conversely, the people
are nicely captured as salient in Fig. 4(e) when using edge preserving smoothing.

Fig. 5 (top) shows different levels of detail of an image. These levels were gener-
ated using anisotropic diffusion speci�cally the Beltrami �ow of [10], with different
smoothing level for each version. Each level has a different smoothness level, therefore
less texture is shown as the smoothing proceeds. Fig. 5 (bottom) shows the saliency
results of each image level applying the local saliency of Eq. (6) to the full resolution
image. The saliency �gure of the most detailed image (on the left) shows the harvest
machine as well as the hay �eld as salient. However, the back edge of the machine is not
shown well in the saliency map. As the smoothing proceeds we see less of the hay as
salient. In the saliency map of the smoothest level (on the right), the back of the harvest
machine is shown well but the cutting knives are less distinctive. This comes to show
that several levels are necessary to generate a good saliency map, and that no level is
more important than the others.

Our algorithm uses n different levels of detail for the saliency map. Let I0...In−1

be the different image levels, where I0 is the original image and In−1 is the smoothest
level. These levels are generated using a progressively stronger smoothing in the Bel-
trami operator. At each level we apply the phase spectrum Fourier transform algorithm
of Eq.(6). When merging information from multiple levels we wish to mitigate the im-
pact of large outliers and aggravate the impact of small ones. Therefore, if a certain
pixel is salient in a single level but not in the others, it should have only a little impact
on the multi-level saliency map. To achieve this behavior in a fast and simple way we
combine the multi-level saliency maps using the harmonic mean. Let Sli be the saliency
map of image level Ii. The multi-level phase based saliency is de�ned as the harmonic
mean of all these saliency maps, as follows:

Slmulti−level =

(
1
n

n−1∑

i=0

1
Slsingle−level(Ii)

)−1

(7)

The harmonic mean presents the desired properties of increasing the saliency of pix-
els which are salient at multiple levels. We have evaluated empirically several other
averaging techniques and the harmonic mean was found to generate the best results.

The multi-level phase-based saliency of Eq.(7) combines implicitly global and local
information by using different levels of detail. Nevertheless, since each pixel is treated
independently and no continuity constraints are applied, occasionally isolated pixels are
detected as salient. To reduce this effect we further apply a 5 × 5 median �lter to the
saliency map of Eq.(7) .

Slocal = MedianFilter(Slmulti−level). (8)

Fig. 6 shows the results of the multi-level saliency compared with our implemen-
tation of the algorithm of Guo et al. [11], which reduces the image to a resolution of
64× 64. The results of the multi-level saliency are more precise and give better detail,
showing only the important edges, which appear in all levels.

While the proposed multi-level saliency provides signi�cant improvement over single-
scale saliency, there are still images where this is not suf�cient. For example, when there



Input image Result of [11] Our multi-level
local saliency

Fig. 6. Our multi-level local saliency results generate a saliency map with �ne details,
while excluding most of the background. The result of [11] are blurry, �ne details are
lost, and parts of the textured background appear.

(a) Input (b) Local (c) Regional (d) Combined (e) Human Label

Fig. 7. Result of both stages of our algorithm on a highly textured image obtained from
the database of [5]. The multi-level local saliency detects details on both the tree and
mountains as well as the �ower �eld. The regional analysis detects the mountains re-
gion. Our �nal result provides detailed edges of the trees and the mountains correspond-
ing to the human labeling.

is background texture with strong edges that appear in all detail levels, as shown in Fig.
7(b). Here, part of the �ower �eld appears as salient, despite the fact that it spreads
almost over the entire image. This is since the �owers are locally salient. To exclude
them and obtain the salient structures only we further need a global saliency measure.

2.4 Regional Saliency

In this section we propose a regional saliency measure which detects regions that are
salient with respect to their surrounding. We propose using regional saliency rather than
global saliency since requiring global saliency is often too restrictive. For example, see
Fig. 6. Requiring global saliency as was proposed in [6] and [7], could result in marking
the three giraffes as non salient since neither is unique. Requiring regional saliency, on
the other hand, will detect all of them as salient with respect to their surrounding.

A salient object in the image can be distinguished from its background by color and
contrast. The color histogram of a region holds statistical information of the object, and



therefore the histogram of a salient object and the histogram of its surroundings are most
likely different. In [6] this principle was adopted by randomly selecting rectangular
regions and comparing their color histogram with that of their surrounding. This process
is greedy since one needs to explore rectangles of all possible aspect ratios, sizes and
locations. In addition, salient objects are not necessarily rectangular. Instead, we offer
a more ef�cient approach, which also deals with regions of various shapes and sizes.

We divide the image into a grid of square blocks of size ki × ki pixels. Since we do
not know a priori the characteristic scale of the texture or the size of the salient objects,
we use a range of block sizes to capture objects at various scales. We start by describing
how we determine the saliency for a single block size. Later on, we will describe how
the saliency results obtained for different block sizes are merged.

An image block is considered salient if its appearance is highly different from its
surrounding blocks. To capture this, we compute for each block the RGB color his-
togram with 48 bins (16 for each color). We compare RGB histograms of two blocks
using χ2 distance. We compare each block in the image with all the blocks in a neigh-
borhood of ±m blocks around it. The similarity between far away blocks is less impor-
tant, hence we penalize the color difference with the distance in position as follows:

dH(Bk, Bl) = χ2(Bk, Bl)
(
1 + C

√
∆x2 + ∆y2

)
, (9)

where ∆x and ∆y are the horizonal and vertical distances between the two blocks,
normalized by the number of columns and rows, respectively. C is a constant set to 3.
For each block we �nd the M most similar blocks within a neighborhood of±m blocks
around it, i.e., the blocks with the lowest dH . The list of most similar neighbors of Bk

is denoted by BNeighbor
k . We then de�ne the regional saliency of block Bk as:

Sr(Bk) = 1− exp

{
− 1

M

∑
dH(Bk, Bl)

}
s.t. Bl ∈ BNeighbor

k . (10)

This means that blocks which have few or no neighbors with similar color histograms
are de�ned as salient and get a value close to 1. Blocks which have more neighbors with
the same color histogram, will get a lower value closer to 0. M is de�ned to be 1/6 of
the number of surrounding blocks in a region of ±m, and m is set to 3.

Since Sr de�nes one saliency value for the entire block, we actually get a saliency
map which is smaller by a factor of k2

i than the true image size, where ki is the size of
the block. We use a bilinear �lter in order to re-scale the regional saliency map to the
original image size, obtaining a map that is smooth rather than blocky:

S̃r = Fs ∗ Sr, (11)

where Fs is a bilinear �lter that scales the regional saliency map to the original image
size. Even though this process is equivalent to scaling the image, we do not use a single
resolution, but combine all scales together into one regional saliency map. In addition,
we later combine this regional map with the �ne detailed local map, therefore �ne
details are not lost.



Multi Level Regional Saliency To make no prior assumptions on object sizes and
scales, we compute regional saliency for several sizes of blocks: ki = [8, 16, 32, 64, 128].
For each block size we generate a regional saliency map Sr(i). As mentioned above, all
the saliency maps are re-scaled to the original image size. If a region is part of a texture
of any size it is not salient therefore its saliency value should be low. A region is to be
considered as salient if it is not part of a texture of any size in the image. To achieve
this, the geometric mean is used in order to average the regional saliency maps:

Sregional =

(
K∏

i=1

S̃r(i)

) 1
K

(12)

By using this function, only areas which have a high regional saliency value in all
levels are considered as salient. Fig. 7(c) shows the regional saliency of the �ower �eld
image. Some of these �owers appear as salient in the local saliency map, but they are
completely removed from the regional saliency map.

2.5 Combining Regional and Local Saliency

As a �nal step, we wish to combine the local saliency map Slocal, which contains in-
formation regarding the important edges in the image, with the regional saliency map
Sregional, which contains information on which of the regions are salient with respect
to their neighborhood. Combining the two, we get a map which features the important
edges that de�ne the salient objects, without containing the edges of the textured ar-
eas. We de�ne salient points as points which obtain a high value of Slocal for residing
on an important edge and obtain a high value of Sregional for residing in a salient re-
gion. Therefore, we de�ne the total saliency map as the product of the square regional
saliency, and the local saliency :

ST = SlocalS
2
regional (13)

We square Sregional since the regional saliency should have more impact on the total
saliency. We then stretch ST so that the lowest value is set to 0, and the highest value is
set to 1. Fig. 7(d) shows the combinations of both maps of the �ower �eld image. The
edges of the salient structures are best depicted by the local map but some edges of the
textured are included as well. The regional map has no edge information but success-
fully removes textured areas. Together, they create a detailed map which demonstrates
only the edges of salient structures.

2.6 Computational Complexity

Consider an image resolution of M × N pixels. We �rst compute n = 4 levels of
detail by applying the anisotropic diffusion of [10] with complexity O(MN). We then
apply the phase transform which adds O(MN) for each level, i.e., a total of O(5MN).
To obtain regional saliency we compute at most MN/64 histograms each of which is
compared with at most 48 neighbors. Since we have 5 scales for the regional saliency
this sums up to O(5MN). Putting together the local and regional saliency we still get an



O(MN) algorithm. The entire process, including both stages of the algorithm, takes a
few seconds using Matlab for images of size 1M pixels. The generation of the different
levels of detail using Beltrami or bilateral �lter [13], takes a few seconds using Matlab,
but can be performed in real time with better implementation. Therefore, we have an
ef�cient and fast algorithm. In the next sections we show that although being fast, this
algorithm still outperforms previous work.

3 Applications: Image Abstraction
There are many applications of saliency where saliency is a required input, includ-
ing image re-targeting, video encoding, surveillance applications, smart sharpening and
others. Our algorithm generates an image depicting the edges of the salient objects,
hence, it could be bene�cial in applications that use these edges. One such application
is cartoonization. In [14], a method for video abstraction is presented, where the image
is abstracted into a cartoon like image using anisotropic diffusion and color quantiza-
tion. Important edges are emphasized using a threshold and overlayed on the smoothed
image. This allows a simpli�ed image where important structures are emphasized. How-
ever, highly textured images emphasize the texture as well as the salient structures in the
image, resulting in a clatter of black lines, as can be seen in Figure 8(b). The building
on the top �gure and the grass at the bottom �gure are both overly marked with black
outlines. The code and images for this application were provided by [15].

Our salient edges detection algorithm can improve the abstraction results. This is
achieved by taking the product of the saliency map of Eq.(13) and the edge map com-
puted using [15]. Therefore, edges of structures which are not salient will not be em-
phasized in the cartoon image. We demonstrate our results in �gure 8(c). When using
our saliency map, mostly the borders of the salient objects are emphasized in black, and
not texture such as bricks or grass.

4 Experimental results
4.1 Qualitative evaluation
Fig. 2 and 9 illustrate visually the difference between our approach and the approach
of [9] and [11]. The algorithm of [11] and its multi-scale extension [9] show a blurry
saliency map, which sometimes detects parts of the background as salient e.g. the gi-
raffes image, the Chinese wall image in Fig. 9, and the cows image in Fig. 2. Our results,
on the other hand, detect only the edges of salient objects. These images demonstrate
the importance of both parts of our algorithm. Using several levels of detail without
reducing scale helps in �nding the most important edges in the image. Analyzing the
color histogram of a region of varying sizes with respect to its neighborhood, allows to
extract only the edges of salient objects, removing edges of textured background.

4.2 Quantitative Evaluation
Edges vs. Regions Our algorithm produces a map of salient edges, which are useful
for several applications, such as selective sharpening and video abstraction which we



(a) Input image (b) Abstraction of [14] (c) Abstraction with
our salient edges

Fig. 8. Abstraction with and without saliency. (b) The abstraction of [14] detects too
many edges in textured areas, hence the building in the top image and the branches in
the middle are cluttered with black lines. (c) Incorporating our salient edges detection
improves the abstraction results and highlights in black only the outlines of the salient
objects. The bottom image zooms in on part of the middle image demonstrating the in
[14] black edges are shown in textured background regions.

demonstrate in section 3. Other applications, require complete region detection. In or-
der to obtain regions rather than edges we suggest to further add a smoothing step to
Eq.(13). We apply Gaussian smoothing to ST with a Gaussian �lter 49 pixels wide with
σ = 16. This is in line with the observation of [8], where it was shown that �nding the
foci of attention and smoothing around them provides saliency maps which correspond
well with human eye tracking results. In the next section we compare our results to eye
�xation data of [16]. Since the eye �xation data is extremely smooth, we use the smooth
version of our saliency map.

Quantitative Results We present quantitative evaluation on two different databases.
The �rst was presented by Bruce and Tsotsos [16] that generated eye �xation data for
a set of 120 color images viewed by 20 subjects. The second database was presented
in [5], where 4 subjects hand labeled in 62 images the regions they perceived as most
salient. In the labeled map, the white region represents salient region, the black region
represents the non-salient region, and the gray region was selected by some labelers but



Input image Our salient edges Result of [11] Human Labeled

Fig. 9. Saliency results of our algorithm.

rejected by others. Based on [17] we compare performance using the area under the
Receiver Operating Characteristic (ROC) curve. The closer it is to 1 the better.

We compare our algorithm, to our implementation of Guo et al. [11] (that showed
their results are almost identical to [5]), to Bruce and Tsotsos [1] using their AIM soft-
ware, to the results of Itti et al. [2], and to the results of the multi-scale [9]. The results of
[2] were obtained from [16] and [5] for each database respectively. Since [9] do not sup-
ply code, their AUC value was obtained from their paper. In all our experiments we used
n = 4 levels of details for calculating Slocal and 5 block sizes ki = 8, 16, 32, 64, 128
for calculating Sregional. In order to calculate the area under the ROC curve we used
Harel's utility function [3]. There, the value of the density maps of the �xation data is
used as a weight for each true positive. For each algorithm we calculated AUC (area
under ROC curve) for each image. Table 1 shows the average value for AUC obtained
by each algorithm over all images. The average value of our AUC is the best in one
database and close to the best value of [9] in the second database. While we get a sim-
ilar value as the best using our smooth maps, we also provide a detailed map of salient
edges. This is not demonstrated by any other saliency method.

Table 1. ROC areas for different saliency models with respect to all human eye �xation
or human labeling in the data sets of [16] and [5].

Data Set Itti [2] AIM [1] Guo[11] Guo MS[9] Ours
[16] 0.729 0.774 0.77 0.824 0.817
[5] 0.832 0.804 0.8408 � 0.8718



5 Conclusion and Future work
This paper presented a novel method for saliency detection which integrates local and
regional saliency at multiple scales. The proposed method does not favor one level over
another as done in hierarchical multi-scale methods. All levels are used together in
order to generate a saliency map which shows the edges of salient objects. Maintaining
a low computational cost we present a robust method which works well even on highly
textured images. We present quantitative and visual results, and show the bene�ts of our
method for image abstraction. In future work we intend to extend our method to video,
and explore how to incorporate motion into the generation of multi-levels of detail and
saliency images.
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