
“Dancing Icons” Detection

Itamar Friedman
Technion

Haifa, Israel
ItamarF@tx.technion.ac.il

Lihi Zelnik-Manor
Technion

Haifa, Israel
Lihi@ee.technion.ac.il

Abstract

Undoubtedly, a key feature in the popularity of smart-
phones is the numerous applications one can install. Fre-
quently, we learn about applications we desire by seeing
them on someone else’s mobile device. A user-friendly way
to obtain these particular applications could be by taking
a photo of their corresponding icons as displayed on our
friend’s screen. We then need to develop methods for au-
tomatic detection and recognition of the icons in a screen
shot. This paper suggest a method for icon detection (icon
recognition is left for future work).

The variety of icons (∼500K) and wallpapers makes the
detection task very difficult using methods such as edge de-
tection, contour detection or template matching. In order to
bypass this difficulty, we suggest using a special feature in-
troduced in several smart phone. When one enters the edit
mode for organizing icons on the screen, the icons vibrate.
Furthermore, When one moves from one set of icons’ view
to another, the icons slide on the screen. We use this feature
to obtain a better detection of the icons on the screen.

1. Introduction

The solution we propose enables the detection of mul-
tiple icons by taking two snapshots of the screen, while
in the “vibrate” mode. Our approach to detect the icons’
frames is by finding their contours in the optical flow im-
age. The optical flow image is produced from two aligned
snapshots that contain “Dancing Icons”. From the flow im-
age we would want to understand where are the potential
points that can reveal the icons’ locations. By projecting
those points on a blank image we find potential contours.
We will use a-priori information in order to find contours
that can describe icons’ frames. Finally we use local and
global structures and information in order to determine the
final detection from the acquired contours.

2. Proposed Approach
2.1. General

In the “vibrate” mode the background is stationary while
the icons rotate slightly. Hence, the optical flow between
a pair of aligned snapshots should be close to zero on
background pixels, and significant on icon pixels. This is
demonstrated well in Figure 1, which shows the magnitude
of the optical flow vectors computed for a pair of aligned
screen shots. This suggests that computing the magnitude
of the optical flow at each pixels could provide useful infor-
mation.

(a) (b) (c)
Figure 1. The optical flow magnitude between a pair of aligned
snapshots is large on icon pixels and minimal on the background.
(a) Frame 1 (b) Optical Flow magnitude (c) Overlayed on Frame 2

2.2. Algorithm

Capturing two frames and aligning them: Our algo-
rithm expects as input a pair of images taken during the
“vibrate” mode. In case they are not aligned, we align
the image by fitting a homography to feature matches us-
ing RANSAC. We then warp one of the images to obtain
alignment. This is illustrated in Figure 2.

Computing Optical Flow: We chose to experiment with
three algorithms for optical flow estimation: the paramet-
ric approach of Ferneback, the seminal algorithm of Lucas-
Kanade and our home-brewed algorithm based on Block

1



Figure 2. To align a pair of frames we fit a Homography using
RANSAC and warp one of the frames.

Matching. The result of Lucas-Kanade and Fernback are
very noisy, while the result of Block-Matching is signifi-
cantly cleaner, with practically no false motion vectors de-
tected on the background.

Icon contour detection: We used two types of edge de-
tection: Canny and simple thresholding of the optical-flow
magnitude image. We applied a set of thresholds to obtain
multiple edge detection results. Each type of “edge image”
reveals different contours.

We adopt the following procedure to detect candidate
contours. We first use Suzuki’s contour detector while al-
lowing it to connect nearby contours into one chain. Next,
we approximate the contour with a low dimension polygon
curve using Douglas-Peucker algorithm. We then exclude
contours whose approximated polygon doesn’t fit our prior
assumptions of icons. We create a convex contour from the
original contour using convex hull algorithm of Sklansky.
This yields the blue contours shown in Figure 3. Finally,
we extract a square that best fit an icon in the contour, while
filtering squares that do not fit our prior assumptions. Our
result is illustrated by the green squares in Figure 3. It can
be seen that almost every icon is surrounded by several con-
tours, and several squares that passed the entire filtering pro-
cess.

(a) (b) (c)
Figure 3. (a) Contours detects by our system. (b) Candidate
bounding-boxes matched to the contours. (c) The final detected
boxes

Finding a bounding-box for each icon: Our final step
consists of grouping candidate squares into our final icon
detection. Our approach is based on the k-means algorithm,
however, we wish to by-pass the need for setting the number
of groups k manually, as we do not know the number of
icons.

The common method for detecting k automatically is su-
perfluous and time consuming. Our approach is based on
transforming the problem into the image domain. We mark
the center of each candidate box on the image plane, see
Figure 4. We then apply a Suzuki’s contour detector to this
image. Each group of points is surrounded by a single con-
tour. All boxes whose centers were surrounded by the same
contour are grouped together. The final box for each group
of icons is defined as the mean over all corresponding can-
didates.

(a) (b) (c)
Figure 4. Grouping box candidates. (a) An input image with the
candidate boxes marked in green. (b) The centers of the candi-
date boxes. We apply contour detection to this image and hence
discover the number of centers automatically. (c) Boxes detected
after grouping. A single box per icon is obtained.

Refining using global arrangement: The local proper-
ties of each group are noisy and hence often the resulting
boxes of the previous stage are inaccurate. To further reduce
these inaccuracies we use global properties known regard-
ing the positioning and size of icons. These global proper-
ties are determind by (1) a-prior known global information
and (2) global information acquired from the current pair
frames.

3. Conclusion
In this paper we have proposed a practical algorithm for

automatic detection of icons in snapshots of a smart phone,
taken during the “vibrate” mode. It then computes the mo-
tion between the snapshots and uses the motion vectors to
detect the icons. Our experiments suggest a high detection
rate (91.5%) with no false alarms. Further improvements
can be obtained by further introducing global constraints
and by detecting the icon sub-types, i.e., some icons are at-
tached flags which modify their rectangular shape.


