
Incorporating Temporal Context in Bag-of-Words Models

Tamar Glaser
Technion

Haifa, Israel
tamarglasr@gmail.com

Lihi Zelnik-Manor
Technion

Haifa, Israel
lihi@ee.technion.ac.il

Abstract

Bag-of-Words (BoW) is a highly popular model for
recognition, due to its robustness and simplicity. Its model-
ing capabilities, however, are somewhat limited since it dis-
cards the spatial and temporal order of the codewords. In
this paper we propose a new model: Contextual Sequence
of Words (CSoW) which incorporates temporal order into
the BoW model for video representation. The temporal con-
text is incorporated in three scales that capture different
aspects of the variability between different performances
of the same action. We show that using CSoW instead of
BoW leads to a significant improvement in action recogni-
tion rates, on several different setups.

1. Introduction
A highly popular approach for action recognition is

based on the Bag-of-Words (BoW) model [2, 8, 10, 20].
Its popularity is due to simplicity and robustness hand-in-
hand with state-of-the-art results. In BoW one first collects
a large sample of feature descriptors from a corpus of train-
ing videos. A dictionary is then constructed by quantizing
the space of feature descriptors into code-book “words”. Fi-
nally, a video is represented by the corresponding histogram
of code-book words. This approach was shown to provide
impressive results in action recognition [3, 8, 10, 20]. Its
main drawback stems from discarding all the temporal and
spatial relations between the features in the video, i.e., ig-
noring the context.

Temporal context information is essential for action rep-
resentation for three reasons. First, many actions are com-
posed of the same sub-actions albeit at a different order.
For instance, both hurdle-race and long-jump are composed
of running and jumping, however, the order of these sub-
actions is different. In the standard BoW approach such
actions could be easily confused as one since the model ig-
nores the order of events.

Second, when different people perform the same activ-
ity, they often vary in the time spent on each sub-action.

For example, when chopping a banana, one person could
spend a longer time peeling it slowly while another could
linger chopping it carefully. In the BoW model these two
performances could be mistaken for two different actions as
the corresponding feature statistics are different.

Last, the quantization of the descriptor space into code-
words introduces further errors as similar sub-actions could
be erroneously grouped as one. For example, both punching
and drinking start from raising the arm. Such sub-actions
could be differentiated if one were to consider also the con-
text in which the sub-actions occur. In drinking the arm is
raised and then bent, while in punching it is first raised and
then stretched.

Previous attempts have been made for incorporating tem-
poral context. Correlograms [12, 17] capture the location
relations between features, at the price of ignoring the fea-
tures’ appearance. N-grams [6] extend BoW by consider-
ing sequences of N code-words as features. This enlarges
the dictionary size exponentially, hence, in practice N ≤ 3,
i.e., only instantaneous context is captured. Finally, several
other approaches which capture temporal order have been
proposed, e.g., [13], however these do not relate directly
to the BoW model. Our interest focuses on extending the
BoW model due to its high popularity. In this paper we deal
with incorporating the temporal context alone, however, this
could be easily extended to consider also the spatial context.

In this work we incorporate temporal relations by rep-
resenting videos using a Contextual Sequence of Words
(CSoW). A CSoW is a sequence of codewords which pre-
serves the temporal context within the sequence in three
scales. The coarse scale captures variations between the
global order of sub-actions. The medium scale provides ro-
bustness against differences in speed between different per-
formances of the same action. Finally, the fine scale dif-
ferentiates between similar sub-actions by considering the
temporal context in which they occur. We further present
metrics by which the distance between two contextual se-
quences of words is measured. Our experiments show that
CSoW leads to a significant improvement in action recog-
nition compared to BoW.

1



Figure 1. The CSoW representation scheme.

The rest of the paper is organized as follows. Our overall
framework is presented in section 2 and the details of our
approach to incorporating global, medium and fine scale
temporal context are provided in section 3. In section 4
we describe how the distance between two videos is mea-
sured. We present quantitative empirical evaluation in sec-
tion 6 and conclude in section 7.

2. Framework
In this section we define the Contextual Sequence of

Words (CSoW) representation. CSoW is similar to BoW,
in the sense that it uses a code-book, and labels the descrip-
tors using codewords. It differs in that rather than using a
histogram over the codewords we also consider their order
of appearance in the video. CSoW encodes the temporal
context of a video sequence in three scales: global, medium
and fine scale. For clear exposition we assume for the time
being a single descriptor per frame. Later on in section 5
we will relax this assumption and show that our CSoW can
be applied when a descriptor is extracted for each interest
point.

As illustrated in Figure 1 our framework consists of the
following steps:

1. Extract a descriptor for each frame in the video.

2. Add Global Context, which indicates the relative tem-
poral location of each descriptor along the sequence.
This stage is inspired by [11], where global spatial po-
sition was used (section 3.1).

3. Codebook Generation: In the training phase we gen-
erate a codebook of V codewords using K-means clus-
tering algorithm. Let Ncls be the number of classes.
We generate Ncls codebooks of V

Ncls
words by cluster-

ing the descriptors of each action class separately, and
then allNcls codebooks are gathered into one ’merged’
codebook. Since our descriptors already incorporate
global context, so does the codebook.

4. Labeling: Each frame is labeled according to its near-
est codeword. After this stage a video sequence is rep-
resented as a sequence of “words”.

5. Medium scale context: Different occurrences of the
same action could vary temporarily in the length of
the sub-actions. Therefore, we aggregate the “words”
into “parts” which correspond to the sub-actions, as
described in section 3.2.

6. Fine scale context: Differentiating between sub-
actions can be improved by using the internal order of
sub-actions in their local neighborhood. We incorpo-
rate this fine-scale context information as described in
section 3.3.

Code-book creation is done obviously only during train-
ing. A given test video sequence, is represented directly us-
ing global, medium and fine scale, by labeling the extended
descriptors to codewords from a precomputed code-book.

3. Incorporating Temporal Context
Let I1, . . . , IN be N frames of a video. We start by ex-

tracting a feature vector fi, describing each frame Ii. After
this step the video is represented as:

video = [f1, f2, . . . , fN ]. (1)

3.1. Global Context

In many cases, different actions are composed of similar
components. For instance, a security camera observing an
entrance door sees “Enter” as: walk – open door – walk –
close door. Similarly, “Exit” is composed of: open door –
walk – close door – walk. Both entering and exiting actions
are composed of similar sub-actions while they differ in the
sub-actions order. Descriptors extracted from the walking
at the beginning of “Enter” will most likely be assigned to
the same codeword as descriptors from the walking at the
end of “Exit”. This will make differentiating between the
two actions more difficult.

To avoid such mix-ups we wish to discriminate between
sub-actions occurring at different moments along the action.
This can be achieved by incorporating the relative moment
of occurrence into the feature descriptors, as follows:

f̄i =
[
fi
i
N

]
. (2)



In training stage we learn a dictionary by quantizing the ex-
tended features. Then, each feature f̄i (both in training and
test set) is labeled according to the closest dictionary word
w{f̄i}.

After the labeling process a video is represented by a se-
quence of codewords which replace the extended features:

video = [w{f̄1}, w{f̄2}, . . . , w{f̄N}]. (3)

3.2. Medium Scale Context

Typically, different people perform the same activity at
a somewhat different pace. For example, when chopping
a banana one person would take longer to peel the banana,
while the other could spend more time slicing it carefully.
As illustrated in Fig. 3.(b) the code-word representations of
such sequences share the same words, while they differ in
the number of occurrences of each word (the length of each
sub-action). To obtain robustness to this diversity we wish
to capture the order in which the sub-actions occur while
ignoring their individual length.

Inspired by [16] we achieve this by clustering the labeled
descriptors according to their temporal location. Consecu-
tive or close repetitions (up to 1/6 of the video length) of
the same code-word are aggregated into a single sub-action
or ”part”, as illustrated in Figures 2, 3. As can be seen,
after clustering the words into parts the similarity between
the sequences is more evident.

Figure 2. (a): Codewords vs. frames for two different sequences of
the same action - ”wave”. (b) Clustering of codewords to parts. (c)
Parts vs. frames for the same sequences. The similarity between
the representations is more evident now.

Formally, after this step a video is represented as a se-
quence of L parts:

video = [p1, . . . , pL], (4)

where
pi = {wi, loci, contexti} (5)

are the parts, that are characterized by their code-
word wi, the mean temporal location loci =

mean{loc (frames labeled towi and clustered to pi)}, and their
fine scale context contexti, to be described in the following
section.

Figure 3. Action ”chop banana” performed by two different actors.
(a) Key frames from the original videos. (b) The corresponding la-
beled sequences (2 top rows), where each frame’s descriptor is la-
beled by a codeword. (c) The corresponding sequences of parts, (2
bottom rows) after the medium scale context stage - the similarity
between the videos is more evident.

3.3. Fine Scale Context

Often different actions include the same sub-actions
(parts), however, the parts differ in the local context in
which they are embedded. To capture this, we extend
the parts representation to include their local neighborhood
temporal context. In the following, we suggest and experi-
ment with two options: one which uses the parts order ex-
plicitly, and one which encodes the contextual information
of the local neighborhood in a more loose manner.

3.3.1 Rigid Fine Scale:

The rigid approach captures the order of parts in a local
neighborhood of each part. We represent each part as pi =
prgd

i = {wi, loci, context
rgd
i }, where

contextrgd
i = [w(pi−R), . . . , w(pi), . . . , w(pi+R)] (6)

and R is the local neighborhood size.

3.3.2 Loose Fine Scale:

In the loose approach, we want to consider the local neigh-
borhood, yet represent it in a more robust manner. Inspired
by [16], we capture local context by histogramming the
codewords in each part’s local neighborhood, as follows.

A part pi is represented by a pair of histograms, one over
the codewords proceeding it:



hpre
i = hist ([wi−R, . . . , wi+lp]),

and the other over the codewords following it:

hpost
i = hist ([wi−lp, . . . , wi+R]),

where lp is a small overlap between the histograms, and R
is the local neighborhood size.

The local context in the case of loose fine scale is:

contextlos
i =

[
hpre

i , hpost
i

]
. (7)

Finally, we represent each part as

pi = plos
i = {wi, loci, context

los
i }.

Note that the histograms are performed over the original
codewords in the parts’ local neighborhood, and not the
parts in the local neighborhood.

Figure 4. CSoW Representation Summary: (a) Video sequence
frames (b) Extracting descriptors and adding global temporal con-
text component. (c) Quantized descriptors - sequence of words (d)
Rigid CSoW representation: Sequence of parts (clustered words).
Each part is represented also by its local context - the sub sequence
of parts in its local neighborhood. (e) Loose CSoW representation
- each part is represented by the histogram of words in its preced-
ing and following local neighborhoods.

Figure 4 summarizes the CSoW representation process.

Local Neighborhood Size When referring to local neigh-
borhood, a definition of the neighborhood size is required.
In the case of rigid fine scale context, the local neighbor-
hood size radius is the number of preceding/following parts
which are counted in the local neighborhood. In the case
of loose fine scale context - it is the number of codewords
from which the preceding/following histograms are built.
Typically, the neighborhood size R required for the loose
context is larger than for the rigid context since histograms
are based on statistics. We report the values used for the
local neighborhood in section 6, and discuss its affect in
Section 6.3. In practice, the two methods show robustness
to the neighborhood size R.

4. CSoW Representation Distance Definition
In order to complete the representation, a definition for

the distance between a pair of CSoWs is required. The ro-
bustness to action’s length and synchronization is one of the
strengths of BoW model, and we would like to preserve this
advantage.

Figure 5. Medium scale context distance computation between two
CSoWs: parts matching. Parts Pi1 , Pi2 , Pi3 in CSoW2 are found
as potential matches to part Pi in CSoW1. All 3 distances to part
Pi are computed, and the minimal one is chosen. The process
repeats for all parts of CSoW1, and the distance between the pair
of CSoWs is the average of the computed distances for all parts (in
one of the CSoWs).

To define the distance between two CSoWs we first find
matches between parts across the CSoWs. The distance be-
tween two CSow’s is taken as the average distance between
matched parts. This is defined next.

Let P = [p1, . . . , pL1 ] and Q = [q1, . . . , qL2 ] be two
CSoWs, with L1 ≥ L2. The distance between P,Q is as
follows:

1. For each part pi in P we find a set of candidate matches
Qpi in Q as parts with an identical or similar code-
word, i.e., qj ∈ Qpi if:

dist (w(pi), w(qj)) < threshold. (8)

2. When Qpi 6= ∅ we find a match for part pi out of the
candidate matches according to the minimal temporal
context distance:

qj = argmin
qj∈Qpi

{dist (context(pi), context(qj))}. (9)

We define the distance between contexts in section 4.1.

3. After finding the match to part pi the distance for this
part is computed:

dist(pi) ,

dist (pi, qj) = dist (context(pi), context(qj)) (10)

4. Finally, the distance between P and Q is the average
distance over all matches:

dist (P,Q) = Mean
1≤i≤L1

{dist (pi, qj)}. (11)



For parts with no match - Qpi = ∅ - we penalize with
a ”no-match” distance:

dist (pi) = (2R+ 1) max
l,k

(dist (wl, wk)) , (12)

where R is the local neighborhood size.

We allow multiple matches for each part in Q since of-
ten two CSoWs of the same action have different lengths.
This also considers the case of periodic actions. Note, that
the multiple match enabling is limited by the global con-
text component. Similar frames in distant temporal loca-
tions along an action can become similar parts only if they
are similar enough relative to the temporal distance between
them. Therefore, there is always a tradeoff between content
similarity and temporal location similarity, when comparing
descriptors.

The use of positive threshold, thus allowing matching
parts to have similar codewords instead of requiring identi-
cal codeword, enables robustness to one of the model’s main
parameters - the codebook size (this is also BoW model
main parameter). Since there is never certainty regarding
the exact suitable codebook size, the request for similarity
instead of identity in parts’ codewords, enables some com-
pensation in case of too large codebooks. It also increases
the robustness to variability in action’s performance, which
may result in similar codewords and not identical ones. We
set threshold = 0.0015.

4.1. Distance between Action Parts

Next, we define the distance between parts according to
one of two fine scale context representation options, rigid or
loose.

Distance between “Rigid” Parts: Comparing between
a pair of sub-sequences while strictly enforcing the inte-
rior order within them is somewhat similar to alphabetical
strings comparison. Therefore, we propose an extension of
Damerau-Levenshtein edit distance [4] which is commonly
used as a distance between alphabetic strings.
The original Damerau-Levenshtein edit distance counts the
number of edit operations which are required in order to
transform one string to the other. Edit operations are: In-
sertion / deletion of a single character, substituting a sin-
gle character with another character, and transposing the lo-
cations of two adjacent characters. Edit distance therefore
considers the order of the compared sequences.

Our local sub-sequences are not exactly strings of alpha-
betic characters, but codewords. In typos, which is one of
the common usages of edit-distance, we would probably
like to ’charge’ a higher cost for replacing a ’f’ with an ’a’,
than for replacing an ’e’ with an ’a’. Similarly, when the
characters are codewords (parts’ labels), we would like to

consider the distances between codewords when computing
the distance between sub-sequences.

Our extension for Damerau-Levenshtein edit distance
extends the original distance by using weighted costs for
edit operations (denoted by WDL). The edit operations
costs are relative to the distance between the codewords par-
ticipating in the edit operation. The different edit operations
costs are detailed in Eq. (13-18).

distrgd
(
contextrgd(pi), contextrgd(qj)

)
=

WDL
(
contextrgd(pi), contextrgd(qj)

)
(13)

where the cost of operations are: The cost of substitu-
tion/transposition between two codewordsw1, w2 is the dis-
tance between the codewords:

substitution (w1, w2) = dist (w1, w2) , (14)

transposition (w1, w2) = dist (w1, w2) . (15)

The cost of codeword insertion/deletion is:

insertion =
1
2

(dist (winsert, wprecede) +MX) , (16)

deletion =
1
2

(dist (wdel, wfollow) +MX) . (17)

where MX is the maximal cost, which is the maximal dis-
tance between codewords:

MX = max
l,k

(dist (wl, wk)) . (18)

Distance between ”Loose” Parts In the loose case the
fine scale context representation is a pair of histograms:

contextlos
i =

[
hpre

i , hpost
i

]
.

Thus the distance is the sum of the distances between the
histograms. The distances between histograms is computed
using χ2 distance:

distlos
(
contextlos(pi), contextlos(qj)

)
=

χ2
(
hpre

pi , h
pre
qj

)
+ χ2

(
hpost

pi , hpost
qj

)
. (19)

This maintains the idea of strengthening the robustness
over enforcing interior order, and allowing more variabil-
ity within the sub-actions.

5. Descriptor-per-Interest-Point Extension
For simplicity, CSoW was presented in the previous sec-

tions as a descriptor-per-frame video representation. The
extension to a descriptor-per-interest-point (e.g., [9]) is triv-
ial. We first extract features at each interest point and add



global context. Interest points detected on the same frame
are assigned the same global context component value. The
feature vectors are then quantized into codewords. Next, we
group code-words into parts, as described before. Since the
temporal location of each part is the mean location of words
assigned to it, this step yields a temporally-ordered se-
quence of parts [p1, . . . , pL], as in the descriptor-per-frame
case. Fine scale temporal context remains unchanged.

6. Experimental Evaluation

Figure 6. Sample frames from the tested datasets. (a) ”get-up” and
(b) ”punch” actions from IXMAS dataset, which contains different
viewpoints. (c) ”dial-phone” and (d) ”eat-banana” actions from
Rochester dataset, which contains complex daily activities.

The aim of our experiments is to examine CSoW model
contribution, and the action recognition rates obtained for
CSoW vs. the rates achieved by BoW. For this goal, in
all experiments we kept the setup identical, and replaced
only the model from BoW to CSoW. The suggested frame-
work was tested on two public data-sets: IXMAS [21] and
Rochester [14]. Figure 6 displays a few actions from these
data-sets. For both data-sets, first each frame of each video
sequence is represented using one of two tested descriptor-
per-frame methods: (i) the view-invariant SSM descriptors
of [8], and (ii) HOG descriptors [3]. Then, both CSoW and
BoW representation are constructed. For IXMAS dataset
we’ve also experimented with the descriptor-per-interest-
point representation using STIP [9] descriptors.

We classify videos using a leave-one-actor-out config-
uration. Note that for the IXMAS dataset, all repetitions
and all viewpoints of the same actor are extracted from the
training set, since each actor performs each action 15 times
is this dataset. The classification is done using SVM [1],
with kernel = e−

distance
β , where distance is the distance

between CSoWs defined on section 4, and the value of the
parameter β is set as

β = 2AV G(training distance) + STD(training distance).
(20)

We have experimented with many other kernels, all yielded
similar results.

In all setups rigid CSoW was applied using a local neigh-
borhood radius of R = 7, and loose CSoW was applied us-

ing a local neighborhood radius of R = 25, where the over-
lap between the preceding and the following histograms is
of lp = 2. In section 6.3 we discuss the local neighborhood
size effect. We used a codebook of 990 words for IXMAS
dataset , and 300 for Rochester dataset.

Table 1 summarizes the action recognition rates for the
different setups examined: 2 data-sets and 3 descriptor
types. The results are presented for naive BoW, and the
two CSoW options. It can be clearly seen that the CSoW
achieves a significant improvement relative to BoW. Both
BoW and CSoW implementations use the same descriptors
and the same shared parameters such as code-book size etc.
In some cases the Rigid-CSoW performed best, while in
others Loose-CSoW did. It is important to note, that the
differences between the results obtained by the two mod-
els are mild and in all cases both improve significantly over
BoW.

6.1. SVM Kernel Parameter

In order to apply classification task, we use SVM, in lib-
svm [1] implementation. SVM requires a kernel matrix
ker, which is based on the distances between samples, and
is generally obtained by:

ker = e
− distance2

β2 or ker = e−
distance

β , (21)

where β > 0. We have examined the effect of β value on
the recognition rates. The values of β examined were ei-
ther functions of the training distance matrix statistics (av-
erage, median, STD of training distances), set values be-
tween β = 10% − 200% of the maximal training distance,
or adaptive β values based on the distance between the test
sample and the training samples, as suggested in [22]. Fig. 7
displays the recognition rates for the different setups, for
different beta values and eq. 21. In addition to the fact that
CSoW outperforms BoW significantly in most cases, CSoW
is significantly more robust to β value, and preserves the re-
sults for different values of β, while BoW has many fluctu-
ations in recognition rates vs. β value.

6.2. CSoW different components contribution

CSoW framework is composed of several stages. The
first is adding the global context component (GCC), and the
local context is added after labeling the descriptors using
a codebook. A question which arises from these stages is
what is the contribution of each stage to the total improve-
ment achieved by using CSoW instead of BoW. This could
be examined by isolating the global from the local context.
Either by classifying with BoW, where the descriptors are
the new descriptors, with GCC added (global context only),
or alternatively - applying CSoW on descriptors without
added GCC (local context only). Table 2 provides such an
evaluation.



Table 1. Comparing CSoW and BoW.

Dataset Descriptor BoW CSoW CSoW Improvement Improvement
Rigid Loose Rigid CSoW Loose CSoW

IXMAS SSM 68.9 71.9 69.6 4.4% 1.1%
IXMAS STIP 67.8 72.2 72.7 6.4% 7.1%
IXMAS HOG 53.9 69.9 63.2 29.7% 17.3%
Rochester SSM 30 56.7 57.3 88.9% 91.1%
Rochester HOG 33.3 52.7 49.3 58% 48%

Table 2. Contribution of local vs. global context.

Dataset Descriptor Global Local only Local only BoW CSoW CSoW
only Rigid Loose Rigid Loose

IXMAS SSM 70.8 69.8 69.6 68.9 71.9 69.6
IXMAS STIP 68.3 71.4 71.6 67.8 72.2 72.7
IXMAS HOG 71.3 59.3 59.3 53.9 69.9 63.2
Rochester SSM 34.7 51.3 51.3 30 56.7 57.3
Rochester HOG 40.7 52.7 50 33.3 52.7 49.3

Figure 7. Recognition Rate vs. β for the different setups, eq. 21,
non-squared distance.

It could be seen from the isolated results that both global
and local context contribute to the overall improvement in
recognition rates. In some cases the partition to two sepa-
rate contributions is clear - the improvement obtained by ei-

ther global context alone or local context alone is less than
the one achieved by combining the whole framework. In
other cases such as Rochester-HOG, it could be seen that the
global context indeed improves the recognition rate, how-
ever the local context alone achieves the same improvement
obtained by the combination of global and local context to-
gether, therefore in this case one can omit the global context
usage. There are also cases probably in which global con-
text is sufficient.

One of the possible reasons for the variety in the neces-
sity of the different CSoW components could be the variety
in human actions - some actions have periodic components,
some tend to have a start-end pattern, some are composed
of several sub-actions, some are fundamental actions, some
have more variability in the sub-actions lengths inside the
action, and so forth. Since the aim of the framework is to
be as generic as possible, by examining the isolated global-
local results and comparing to the overall results, the nat-
ural conclusion is to use the whole framework, unless we
have some specific knowledge regarding the actions classi-
fied. In the generic case, the combined CSoW framework is
most likely to achieve the best recognition rates.

6.3. Local Neighborhood’s Size

In order to examine the robustness to the local neighbor-
hood radius R, we applied CSoW with different R values.
Figure 8 summarizes the results for different R values, for
Rochester dataset with HOG descriptor. Similar behavior
was observed for the other dataset-descriptor setups as well.

It can be seen that for both rigid and loose local context
there is a wide range of radius values which provide sim-
ilar recognition rates. Overly large or small radius breaks



Figure 8. Recognition rates vs. R values, for Rochester datatset
with HOG descriptor, for (a) Rigid CSoW and (b) Loose CSoW.

the locality assumptions. Loose-CSoW requires larger lo-
cal neighborhood for two reasons: First, histogramming re-
quires bigger amount of data to conclude statistical infor-
mation. Second, in Rigid CSoW the local neighborhood
refers to the number of parts surrounding a part, and in
Loose CSoW the histograms are over codewords and not
parts. We further tested variations of the overlap lp between
values of 1-5, and found results were not changed.

7. Summary and Discussion
The Contextual Sequence of Words representation is a

generalization of the Bag of Words model and for the case
when temporal context has importance in the signal repre-
sentation. In this work it was shown that CSoW can im-
prove action recognition rates generally, for several setups,
i.e., different data-sets and regardless of the features used.
This is the main contribution of the CSoW model. We
also note that CSoW could be directly applied, as is, to
any signal whose temporal order and context is of signif-
icance, such as audio signals, text signals etc. It can also
be extended to the spatial 2D domain, or even to the spatio-
temporal 3D domain, in order to represent images and video
signals.

8. Acknowledgements
This research was supported by Marie Curie IRG-

208529, the Ollendorf foundation, and by the Fund for the
Promotion of Research at the Technion.

References
[1] C.C. Chang, C.J. Lin, LIBSVM : a library for sup-

port vector machines, 2001. Software available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm 6

[2] G. Csurka, C. Dance, L. Fan, J. Willamowski, C. Bray Visual
categorization with bags of keypoints, ECCV International
workshop on statistical learning in computer vision,2004. 1

[3] N. Dalal, B. Triggs, Histograms of oriented gradients for hu-
man detection, In CVPR 2005, pp. 886-893. 1, 6

[4] F.J. Damerau. A technique for computer detection and cor-
rection of spelling errors Communications of the ACM,
1964. 5

[5] M. Fischler and R. Elschlager, The representation and
matching of pictorial structures, IEEE Truns. on Computers,
vol. 22, pp. 67-92,1973.

[6] R. Hamid, A. Johnson, S. Batta, A. Bobick, C. Isbell, G.
Coleman. Detection and Explanation of Anomalous Activi-
ties: Representing Activities as Bags of Event n-Grams, In
CVPR 2005. 1

[7] T. Hofmann, Probabilistic latent semantic indexing, 22nd in-
ternational ACM SIGIR conference on Research and devel-
opment in information retrieval, 1999.

[8] I. N. Junejo, E. Dexter, I. Laptev, P. Perez, CView-
independent action recognition from temporal self-
similarities, In PAMI,2010. 1, 6

[9] I. Laptev, T. Lindeberg, Space-Time Interest Points, In ICCV,
2003. 5, 6

[10] I. Laptev, P. Pérez, Retrieving actions in movies, Proc. ICCV,
2007. 1

[11] S. Lazebnik, C. Schmid, J. Ponce, Beyond bags of features:
Spatial pyramid matching for recognizing natural scene cat-
egories, In CVPR, 2006. 2

[12] J. Liu, M. Shah, Learning human actions via information
maximization, In CVPR, 2008. 1

[13] F. Lv, R. Nevatia, Single View Human Action Recognition
using Key Pose Matching and Viterbi Path Searching, In
CVPR, 2007. 1

[14] R. Messing, C. Pal, H. Kautz, Activity recognition using the
velocity histories of tracked keypoints, In ICCV, 2009 6

[15] J.C. Niebles, H. Wang, L. Fei-Fei, Unsupervised Learning
of Human Action Categories Using Spatial-Temporal Words,
International Journal of Computer Vision (IJCV), 2008.

[16] M. Osadchy, E. Morash, Loose shape model for discrimina-
tive learning of object categories, In CVPR 2008 3

[17] S. Savarese, A. Del Pozo, JC. Niebles, L. Fei-Fei, Spatial-
Temporal Correlations for Unsupervised Action Classifica-
tion, IEEE Workshop on Motion and Video Computing, Cop-
per Mountain, Colorado January 8-9, 2008. 1

[18] S. Savarese, J.Winn, A. Criminisi, Discriminative Object
Class Models of Appearance and Shape by Correlatons, In
CVPR, June 2006.

[19] M.M. Ullah, S.N. Parizi, I. Laptev Improving Bag-of-
Features Action Recognition with Non-local Cues, in Proc.
BMVC 2010, Aberystwyth, UK.

[20] H. Wang, M.M. Ullah, A. Klaser, I. Laptev, C. Schmid. Eval-
uation of local spatio-temporal features for action recogni-
tion, British Machine Vision Conference, 2009. 1

[21] D. Weinland, R. Ronfard, E. Boyer, Free Viewpoint Action
Recognition using Motion History Volumes, Computer Vi-
sion and Image Understanding, 2006 6

[22] L. Zelnik-Manor, P. Perona Self-Tuning Spectral Clustering,
Advances in Neural Information Processing Systems 17, pp.
1601-1608, 2005, (NIPS’04) 6


