
1

Dictionary Optimization for Block-Sparse
Representations

Lihi Zelnik-Manor, Kevin Rosenblum, Yonina C. Eldar

Abstract—Recent work has demonstrated that using a carefully
designed dictionary instead of a predefined one, can improve
the sparsity in jointly representing a class of signals. This has
motivated the derivation of learning methods for designing a
dictionary which leads to the sparsest representation for a given
set of signals. In some applications, the signals of interest can
have further structure, so that they can be well approximated by
a union of a small number of subspaces (e.g., face recognition and
motion segmentation). This implies the existence of a dictionary
which enables block-sparse representations of the input signals
once its atoms are properly sorted into blocks. In this paper, we
propose an algorithm for learning a block-sparsifying dictionary
of a given set of signals. We do not require prior knowledge
on the association of signals into groups (subspaces). Instead,
we develop a method that automatically detects the underlying
block structure given the maximal size of those groups. This is
achieved by iteratively alternating between updating the block
structure of the dictionary and updating the dictionary atoms to
better fit the data. Our experiments show that for block-sparse
data the proposed algorithm significantly improves the dictionary
recovery ability and lowers the representation error compared to
dictionary learning methods that do not employ block structure.

I. INTRODUCTION

The framework of sparse coding aims at recovering an
unknown vector θ ∈ RK from an under-determined system
of linear equations x = Dθ, where D ∈ RN×K is a given
dictionary, and x ∈ RN is an observation vector with N < K.
Since the system is under-determined, θ can not be recovered
without additional information. The framework of compressed
sensing [?], [?] exploits sparsity of θ in order to enable
recovery. Specifically, when θ is known to be sparse so that
it contains few nonzero coefficients, and when D is chosen
properly, then θ can be recovered uniquely from x = Dθ.
Recovery is possible irrespectively of the locations of the
nonzero entries of θ. This result has given rise to a multitude
of different recovery algorithms. Most prominent among them
are Basis Pursuit (BP) [?], [?], [?] and Orthogonal Matching
Pursuit (OMP) [?], [?].

Recent work [?], [?], [?], [?], [?], [?] has demonstrated that
adapting the dictionary D to fit a given set of signal exam-
ples leads to improved signal reconstruction. These learning
algorithms attempt to find a dictionary that leads to optimal
sparse representations for a certain class of signals. These
methods show impressive results for representations with

Copyright c© 2011 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

The authors are with the Technion - Israel Institute of Technology,
Haifa, Israel. Email: kevin@tx.technion.ac.il, lihi@ee.technion.ac.il, yon-
ina@ee.technion.ac.il.

arbitrary sparsity structures. In some applications, however,
the representations have further structure that can be exploited.
Our interest is in the case of signals that are known to be
drawn from a union of a small number of subspaces [?], [?],
[?]. This occurs naturally, for example, in face recognition
[?], [?], motion segmentation [?], multiband signals [?], [?],
[?], measurements of gene expression levels [?], and more.
For such signals, sorting the dictionary atoms according to
the underlying subspaces leads to sparse representations which
exhibit a block-sparse structure, i.e., the nonzero coefficients
occur in clusters of varying sizes. Several methods, such as
Block BP (BBP) [?], [?], [?] and Block OMP (BOMP) [?], [?]
and group Lasso [?], [?] have been proposed to take advantage
of this structure in recovering the block-sparse representation
θ. These methods typically assume that the dictionary is
predetermined and the block structure is known.

In this paper we propose a method for designing a block-
sparsifying dictionary for a given set of signals. In other
words, we wish to find a dictionary that provides block-
sparse representations best suited to the signals in a given
set. To take advantage of the block structure via block-sparse
approximation methods, it is necessary to know the block
structure of the dictionary. We do not assume that it is known
a-priori. Instead, we only assume all blocks have a known
maximal size and infer the block structure from the data
accordingly while adapting the dictionary. If we were not
constraining the maximal block size, we would eventually end
up with one block which contains all the dictionary atoms.

We start by formulating this task as an optimization prob-
lem. We then present an algorithm for minimizing the pro-
posed objective, which iteratively alternates between updating
the block structure and updating the dictionary. The block
structure is inferred by the agglomerative clustering of dic-
tionary atoms that induce similar sparsity patterns. In other
words, after finding the sparse representations of the training
signals, the atoms are progressively merged according to the
similarity of the sets of signals they represent. A variety of
segmentation methods through subspace modeling have been
proposed recently [?], [?], [?]. These techniques learn an
underlying collection of subspaces based on the assumption
that each of the samples lies close to one of them. However,
unlike our method, they do not treat the more general case
where the signals are drawn from a union of several subspaces.

The dictionary blocks are then sequentially updated to
minimize the representation error at each step. The proposed
algorithm is an intuitive extension of the K-SVD method [?],
which yields sparsifying dictionaries by sequentially updating
the dictionary atoms, to the case of block structures: When the
blocks are of size 1 our cost function and algorithm reduce

2

to K-SVD. Our experiments show that updating the dictionary
block by block is preferred over updating the atoms in the
dictionary one by one, as in K-SVD.

We demonstrate empirically that both parts of the algorithm
are indispensable to obtain high performance. While fixing
a random block structure and applying only the dictionary
update part leads to improved signal reconstruction compared
to K-SVD, combining the two parts leads to even better results.
Furthermore, our experiments show that K-SVD often fails to
recover the underlying block structure. This is in contrast to
our algorithm which succeeds in detecting most of the blocks.

We begin by reviewing previous work on dictionary design
in Section ??. In Section ?? we present an objective for
designing block-sparsifying dictionaries. We show that this
objective is a direct extension of the one used by K-SVD.
We then propose an algorithm for minimizing the proposed
cost function in Section ??. Section ?? provides a detailed
description of the proposed algorithm. We evaluate the per-
formance of our method and compare it to previous work in
Section ??.

Throughout the paper, we denote vectors by lowercase
letters, e.g., x, and matrices by uppercase letters, e.g., A. The
jth column of a matrix A is written as Aj , and the ith row
as Ai. The sub-matrix containing the entries of A in the rows
with indices r and the columns with indices c is denoted Ar

c .
The Frobenius norm is defined by ‖A‖F ≡

√∑
j ‖Aj‖22. The

ith element of a vector x is denoted x[i]. ‖x‖p is its lp-norm
and ‖x‖0 counts the number of non-zero entries in x.

II. PRIOR WORK ON DICTIONARY DESIGN

The goal in dictionary learning is to find a dictionary D
and a representation matrix Θ that best match a given set of
vectors Xi that are the columns of X . In addition, we would
like each vector Θi of Θ to be sparse. In this section we briefly
review two popular sparsifying dictionary design algorithms,
K-SVD [?] and MOD (Method of Optimal Directions) [?]. We
will generalize these methods to block-sparsifying dictionary
design in Section ??.

To learn a dictionary, both MOD and K-SVD attempt to
optimize the same cost function for a given sparsity measure
k:

min
D,Θ

‖X −DΘ‖F

s.t. ‖Θi‖0 ≤ k, i = 1, . . . , L (1)

where X ∈ RN×L is a matrix containing L given input
signals, D ∈ RN×K is the dictionary and Θ ∈ RK×L is a
sparse representation of the signals. Note that the solution of
(??) is never unique due to the invariance of D to permutation
and scaling of columns. This is partially resolved by requiring
normalized columns in D. We will therefore assume through-
out the paper that the columns of D are normalized to have
l2-norm equal 1.

Problem (??) is non-convex and NP-hard in general. Both
MOD and K-SVD attempt to approximate (??) using a relax-
ation technique which iteratively fixes all the parameters but
one, and optimizes the objective over the remaining variable.

In this approach the objective decreases (or is left unchanged)
at each step, so that convergence to a local minimum is
guaranteed. Since this might not be the global optimum both
approaches are strongly dependent on the initial dictionary
D(0). The convention [?] is to initialize D(0) as a collection
of K data signals from the same class as the training signals
X .

The first step of the nth iteration in both algorithms
optimizes Θ given a fixed dictionary D(n−1), so that (??)
becomes:

Θ(n) = arg min
Θ

‖X −D(n−1)Θ‖F
s.t. ‖Θi‖0 ≤ k, i = 1, . . . , L. (2)

This problem can be solved approximately using sparse coding
methods such as BP or OMP for each column of Θ, since the
problem is separable in these columns. Next, Θ(n) is kept fixed
and the representation error is minimized over D:

D(n) = arg min
D
‖X −DΘ(n)‖F . (3)

The difference between MOD and K-SVD lies in the choice of
optimization method for D(n). While K-SVD converges faster
than MOD, both methods yield similar results (i.e., similar
reconstruction errors).

The MOD algorithm treats the problem in (??) directly.
This problem has a closed form solution given by the pseudo-
inverse:

D(n) = XΘ′(n)(Θ(n)Θ′(n))−1. (4)

Here we assume for simplicity that Θ(n)Θ′(n) is invertible.
The K-SVD method solves (??) differently. The columns in
D(n−1) are updated sequentially, along with the corresponding
non-zero coefficients in Θ(n). This parallel update leads to
a significant speedup while preserving the sparsity pattern
of Θ(n). For j = 1, . . . ,K, the update is as follows. Let
ωj ≡ {i ∈ 1, . . . , L|Θj

i 6= 0} be the set of indices correspond-
ing to columns in Θ(n) that use the atom Dj , i.e., their ith
row is non-zero. Denote by Rωj = Xωj −

∑
i 6=j(DiΘ

i
ωj

) the
representation error of the signals Xωj excluding the contri-
bution of the jth atom. The representation error of the signals
with indices ωj can then be written as ‖Rωj

−DjΘ
j
ωj
‖F . The

goal of the update step is to minimize this representation error,
which is accomplished by choosing

Dj = U1, Θj
ωj

= ∆1
1V
′
1 .

Here U∆V ′ is the Singular Value Decomposition (SVD) of
Rωj . Note, that the columns of D remain normalized after the
update. The K-SVD algorithm obtains the dictionary update
by K separate SVD computations, which explains its name.

III. BLOCK-SPARSIFYING DICTIONARY OPTIMIZATION

We now formulate the problem of block-sparsifying dic-
tionary design. We then propose an algorithm which can be
seen as a natural extension of K-SVD for the case of signals
with block sparse representations. Our method involves an
additional clustering step in order to determine the block
structure.

3

Fig. 1. Two equivalent examples of dictionaries D and block structures d
with 5 blocks, together with 2-block-sparse representations θ. Both examples
represent the same signal, since the atoms in D and the entries of d and θ
are permuted in the same manner (in both cases ‖θ‖0,d = 2).

A. Problem Definition

For a given set of L signals X = {Xi}Li=1 ∈ RN , we wish
to find a dictionary D ∈ RN×K whose atoms are sorted in
blocks, and which provides the most accurate representation
vectors whose non-zero values are concentrated in a fixed
number of blocks. In previous works dealing with the block-
sparse model, it is typically assumed that the block structure in
D is known a-priori, and even more specifically, that the atoms
in D are sorted according to blocks [?], [?]. Instead, in this
paper we address the more general case where the association
of dictionary atoms into blocks is not known a-priori. We do,
however, make the assumption that the maximal block size,
denoted by s, is known.

More specifically, suppose we have a dictionary whose
atoms are sorted in blocks that enable block-sparse representa-
tions of the input signals. Assume that each block is given an
index number. Let d ∈ RK be the vector of block assignments
for the atoms of D, i.e., d[i] is the block index of the atom
Di. We say that a vector θ ∈ RK is k-block-sparse over d
if its non-zero values are concentrated in k blocks only. This
is denoted by ‖θ‖0,d = k, where ‖θ‖0,d is the l0-norm over
d and counts the number of non-zero blocks as defined by
d. Fig. ?? presents examples of two different block structures
and two corresponding block-sparse vectors and dictionaries.

Our goal is to find a dictionary D and a block structure d,
with maximal block size s, that lead to optimal k-block sparse
representations Θ = {Θi}Li=1 for the signals in X:

min
D,d,Θ

‖X −DΘ‖F

s.t. ‖Θi‖0,d ≤ k, i = 1, . . . , L

|dj | ≤ s, j ∈ [1, B] (5)

where dj = {i ∈ 1, . . . ,K|d[i] = j} is the set of indices
belonging to block j (i.e., the list of atoms in block j), and
B is the number of blocks.

The case when there is no underlying block structure or
when the block structure is ignored, is equivalent to setting
s = 1 and d = [1, . . . ,K]. Substituting this into (??), reduces
it to (??). In this setting, the objective and the algorithm we
propose coincide with K-SVD. In Section ?? we demonstrate
through simulations that when an underlying block structure
exists, optimizing (??) via the proposed framework improves
recovery results and lowers the representation errors with

respect to (??).

B. Algorithm Preview

In this section, we propose a framework for solving (??).
Since this optimization problem is non-convex, we adopt the
coordinate relaxation technique. We initialize the dictionary
D(0) as the outcome of the K-SVD algorithm (using a random
collection of K signals leads to similar results, but slightly
slower convergence). Then, at each iteration n we perform
the following two steps:

1) Recover the block structure by solving (??) for d and Θ
while keeping D(n−1) fixed:

[d(n),Θ(n)] = argmin
d,Θ

‖X −D(n−1)Θ‖F

s.t. ‖Θi‖0,d ≤ k, i = 1, . . . , L

|dj | ≤ s, j ∈ [1, B]. (6)

An exact solution would require a combinatorial search
over all feasible d and Θ. Instead, we propose a tractable
approximation to (??) in Section ??, referred to as
Sparse Agglomerative Clustering (SAC). Agglomerative
clustering builds blocks by progressively merging the
closest atoms according to some distance measure [?],
[?]. SAC uses the l0-norm for this purpose.

2) Fit the dictionary D(n) to the data by solving (??) for
D and Θ while keeping d(n) fixed:

[D(n),Θ(n)] = argmin
D,Θ

‖X −DΘ‖F (7)

s.t. ‖Θi‖0,d(n) ≤ k, i = 1, . . . , L.

In Section ?? we propose an algorithm, referred to as
Block K-SVD (BK-SVD), for solving (??). This technique
can be viewed as a generalization of K-SVD since the
blocks in D(n) are sequentially updated together with
the corresponding non-zero blocks in Θ(n).

In the following sections we describe in detail the steps
of this algorithm. The overall framework is summarized in
Algorithm 1.

C. Block Structure Recovery: Sparse Agglomerative Cluster-
ing

In this section we propose a method for recovering the
block structure d given a fixed dictionary D, as outlined in
Fig. ??.(a). The suggested method is based on the coordinate
relaxation technique to solve (??) efficiently. We start by
initializing d and Θ. Since we have no prior knowledge on
d it is initialized as K blocks of size 1, i.e. d = [1, . . . ,K].
To initialize Θ we keep d fixed and solve (??) over Θ using
OMP with k×s instead of k non-zero entries, since the signals
are known to be combinations of k blocks of size s. Based on
the obtained Θ, we first update d as described below and then
again Θ using BOMP [?]. The BOMP algorithm sequentially
selects the dictionary blocks that best match the input signals
Xi, and can be seen as a generalization of the OMP algorithm
to the case of blocks.

To update d we wish to solve (??) while keeping Θ fixed.
Although the objective does not depend on d, the constraints

4

Algorithm 1 Block-Sparse Dictionary Design
Input: A set of signals X , block sparsity k and maximal block
size s.
Task: Find a dictionary D, block structure d and the corre-
sponding sparse representation Θ by optimizing:

min
D,d,Θ

‖X −DΘ‖F

s.t. ‖Θi‖0,d ≤ k, i = 1, . . . , L

|dj | ≤ s, j ∈ d.

Initialization: Set the initial dictionary D(0) as the outcome of
K-SVD.
Repeat from n = 1 until convergence:

1) Fix D(n−1), and update d(n) and Θ(n) by applying
Sparse Agglomerative Clustering.

2) Fix d(n), and update D(n) and Θ(n) by applying BK-
SVD.

3) n = n+ 1.

do. Therefore, the problem becomes finding a block structure
with maximal block size s that meets the constraint on the
block-sparsity of Θ. To this end, we seek to minimize the
block-sparsity of Θ over d:

min
d

L∑
i=1

‖Θi‖0,d s.t. |dj | ≤ s, j ∈ [1, B]. (8)

Before we describe how (??) is optimized we first wish to
provide some insight. When a signal Xi is well represented
by the unknown block dj , then the corresponding rows in Θi

are likely to be non-zero. Therefore, rows of Θ that exhibit
a similar pattern of non-zeros are likely to correspond to
columns of the same dictionary block. Consequently, grouping
dictionary columns into blocks is equivalent to grouping rows
of Θ according to their sparsity pattern. To detect rows with
similar sparsity patterns we next rewrite the objective of (??)
as a function of the pattern on non-zeros.

Let ωj(Θ, d) denote the list of columns in Θ that have
non-zero values in rows corresponding to block dj , i.e.,
ωj(Θ, d) = {i ∈ 1, . . . , L| ‖Θdj

i ‖2 > 0}. Problem (??) can
now be rewritten as:

min
d

∑
j∈[1,B]

|ωj(Θ, d)| s.t. |dj | ≤ s, j ∈ [1, B] (9)

where |ωj | denotes the size of the list ωj , and B is the
current number of blocks. We propose using a sub-optimal
tractable agglomerative clustering algorithm [?] to minimize
this objective. At each step we merge the pair of blocks that
have the most similar pattern of non-zeros in Θ, leading to
the steepest descent in the objective. In our implementation
we allow merging blocks as long as the maximum block size
s is not exceeded. While this aims at obtaining blocks of size
s, some of the blocks could be smaller since, for example, two
blocks of size s− 1 will not be further merged as their joint
dimension exceeds s.

More specifically, at each step we find the pair of blocks

(j∗1 , j
∗
2) such that:

[j∗1 , j
∗
2] = arg max

j1 6=j2
|ωj1 ∩ ωj2 | s.t. |dj1 |+ |dj2 | ≤ s.

We then merge j∗1 and j∗2 by setting ∀i ∈ dj2 : d[i] ← j1,
ωj1 ← {ωj1 ∪ ωj2}, and ωj2 ← ø. This is repeated until
no blocks can be merged without breaking the constraint
on the block size. We do not limit the intersection size
for merging blocks from below, since merging is always
beneficial. Merging blocks that have nothing in common may
not reduce the objective of (??); however, this can still lower
the representation error at the next BK-SVD iteration. Indeed,
while the number of blocks k stays fixed, the number of atoms
that can be used to reduce the error increases.

Fig. ??.(b) presents an example that illustrates the notation
and the steps of the algorithm. In this example the maximal
block size is s = 2. At initialization the block structure is set
to d = [1, 2, 3, 4], which implies that the objective of (??) is∑L

i=1 ‖Θi‖0,d = 2 + 1 + 2 + 2 = 7. At the first iteration, ω1

and ω3 have the largest intersection. Consequently, blocks 1
and 3 are merged. At the second iteration, ω2 and ω4 have the
largest intersection, so that blocks 2 and 4 are merged. This
results in the block structure d = [1, 2, 1, 2] where no blocks
can be merged without surpassing the maximal block size.
The objective of (??) is reduced to

∑L
i=1 ‖Θi‖0,d = 4, since

all 4 columns in Θ are 1-block-sparse. Note that since every
column contains non-zero values, this is the global minimum
and therefore the algorithm succeeded in solving (??).

While more time-efficient clustering methods exist, we have
selected agglomerative clustering because it provides a simple
and intuitive solution to our problem. Partitional clustering
methods, such as K-Means, require initialization and are
therefore not suited for highly sparse data and the l0-norm
metric. Moreover, it is preferable to limit the maximal block
size rather than to determine the minimal number of blocks.
This is since the latter could lead to degeneracies such as
obtaining a single high-dimensional block and multiple one-
dimensional blocks. It is important to note that due to the
iterative nature of our dictionary design algorithm, clustering
errors can be corrected in the following iteration, after the
dictionary has been refined.

The computational complexity of the SAC algorithm is
L · K2 since we need to calculate the distances between all
pairs of atoms and each distance estimation is of complexity
L. Prior to clustering we employ OMP whose complexity is
L((ks)2K + 2NK) (see [?]).

D. Block K-SVD Algorithm

We now propose the BK-SVD algorithm for recovering the
dictionary D and the representations Θ by optimizing (??)
given a block structure d and input signals X .

Using the coordinate relaxation technique, we solve this
problem by minimizing the objective based on alternating Θ
and D. At each iteration m, we first fix D(m−1) and use
BOMP to solve (??) which reduces to

Θ(m) = arg min
Θ

‖X −D(m−1)Θ‖F
s.t. ‖Θi‖0,d ≤ k, i = 1, . . . , L. (10)

5

(a) (b)
Fig. 2. (a) A flow chart describing the SAC algorithm. (b) A detailed example of the decision making process in the SAC algorithm.

Next, to obtain D(m) we fix Θ(m), d and X , and solve:

D(m) = arg min
D
‖X −DΘ(m)‖F . (11)

Inspired by the K-SVD algorithm, the blocks in D(m−1) are
updated sequentially, along with the corresponding non-zero
coefficients in Θ(m). For every block j ∈ [1, B], the update is
as follows. Denote by Rωj

= Xωj
−
∑

i 6=j Ddi
Θdi

ωj
the repre-

sentation error of the signals Xωj
excluding the contribution

of the jth block. Here ωj and dj are defined as in the previous
subsection. The representation error of the signals with indices
ωj can then be written as ‖Rωj − DdjΘ

dj
ωj‖F . Finally, the

representation error is minimized by setting Ddj
Θ

dj
ωj equal to

the matrix of rank |dj | that best approximates Rωj . This can
obtained by the following updates:

Ddj = [U1, . . . , U|dj |]

Θdj
ωj

= [∆1
1V1, . . . ,∆

|dj |
|dj |V|dj |]

′

where the |dj | highest rank components of Rωj
are computed

using the SVD Rωj = U∆V ′. The updated Ddj is now an
orthonormal basis that optimally represents the signals with
indices ωj . Note that the representation error is also minimized
when multiplying Ddj on the right by W and Θ

dj
ωj on the

left by W−1, where W ∈ R|dj |×|dj | is an invertible matrix.
However, if we require the dictionary blocks to be orthonormal
subspaces, then the solution is unique up to a permutation of
the atoms. It is also important to note that if |dj | > |ωj |,
then |dj |− |ωj | superfluous atoms in block j can be discarded

without any loss of performance.
This dictionary update minimizes the representation error

while preserving the sparsity pattern of Θ(m), as in the K-SVD
dictionary update step. However, the update step in the BK-
SVD algorithm converges faster thanks to the simultaneous
optimization of the atoms belonging to the same block. Our
simulations show that it leads to smaller representation errors
as well. Moreover, the dictionary update step in BK-SVD
requires about s times less SVD computations, which makes
the proposed algorithm significantly faster than K-SVD.

As was shown in [?] the complexity of K-SVD is dominated
by that of OMP and is hence L((ks)2K+2NK) (assuming the
target sparsity is ks). Similarly, for BK-SVD the complexity
is L((k)2K + 2NK).

We next present a simple example illustrating the advantage
of the BK-SVD dictionary update step, compared to the K-
SVD update. Let D1 and D2 be the atoms of the same
block, of size 2. A possible scenario is that D2 = U1

and Θ2
ωj

= −∆(1, 1)V ′1 . In K-SVD, the first update of
D is D1 ← U1 and Θ1

ωj
← ∆(1, 1)V ′1 . In this case the

second update would leave D2 and Θ2
ωj

unchanged. As a
consequence, only the highest rank component of Rωj is
removed. Conversely, in the proposed BK-SVD algorithm, the
atoms D1 and D2 are updated simultaneously, resulting in the
two highest rank components of Rωj

being removed.

IV. EXPERIMENTS

In this section, we evaluate the contribution of the proposed
block-sparsifying dictionary design framework empirically.

6

We also examine the performance of the SAC and the BK-
SVD algorithms separately. We perform experiments on syn-
thetic data as well as real-world image data.

For each simulation, we repeat the following procedure 50
times: We randomly generate a dictionary D∗ of dimension
30× 60 with normally distributed entries and normalize its
columns. The block structure is chosen to be of the form:

d∗ = [1, 1, 1, 2, 2, 2, . . . , 20, 20, 20]

i.e. D∗ consists of 20 subspaces of size s = 3. We generate
L = 5000 test signals X of dimension N = 30, that
have 2-block sparse representations Θ∗ with respect to D∗

(i.e. k = 2). The generating blocks are chosen randomly
and independently and the coefficients are i.i.d. uniformly
distributed. White Gaussian noise with varying SNR was
added to X .

We perform three experiments:
1) Given D∗ and X , we examine the ability of SAC to

recover d∗.
2) Given d∗ and X , we examine the ability of BK-SVD to

recover D∗.
3) We examine the ability of BK-SVD combined with SAC

to recover D∗ and d∗ given only X .
We use two measures to evaluate the success of the simu-

lations based on their outputs D, d and Θ:
• The normalized representation error e = ‖X−DΘ‖F

‖X‖F .
• The percentage p of successfully recovered blocks. For

every block in D, we match the closest block in D∗ with-
out repetition, where the (normalized) distance between
two blocks S1 and S2 (of sizes s1 and s2) is measured
by [?]:

Dist(S1, S2) ≡

√(
1−

‖S′1S2‖2F
max(s1, s2)

)
assuming that both blocks are orthonormalized. If the
distance between the block in D and its matched block
in D∗ is smaller than 0.01, we consider the recovery of
this block as successful.

A. Evaluating SAC

To evaluate the performance of the SAC algorithm, we
assume that D∗ is known, and use SAC to reconstruct d∗

and then BOMP to approximate Θ∗. The SAC algorithm is
evaluated as a function of the SNR of the signals X for k = 2,
and as a function of k in a noiseless setting. In addition to
e and p, Fig. ?? also shows the objective of (??), which we
denote by b. We compare our results with those of an “oracle”
algorithm, which is given as input the true block structure d∗.
It then uses BOMP to find Θ. The oracle’s results provide a
lower bound on the reconstruction error of our algorithm (we
cannot expect our algorithm to outperform the oracle). It can
be seen that for SNR higher than −5[dB], the percentage p of
successfully recovered blocks quickly increases to 100% (Fig.
??.(b)), the representation error e drops to zero (Fig. ??.(a))
and the block-sparsity b drops to the lowest possible value
k = 2 (Fig. ??.(c)). Fig. ??.(e) shows that the block structure

−10 0 10 20 30 40
0

0.2

0.4

0.6

0.8

SNR

e

(a)

SAC
oracle

−10 0 10 20 30 40
0

50

100

SNR

p

(b)

−10 0 10 20 30 40
2

3

4

5

6

SNR

b

(c)

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

k

e

(d)

1 2 3 4 5 6
0

50

100

k

p

(e)

1 2 3 4 5 6
0

5

10

15

k

b

(f)

Fig. 3. Simulation results of the SAC algorithm. The graphs show e, p and
b as a function of the SNR of the data signals for k = 2 (a, b, c), and as a
function of k in a noiseless setting (d, e, f).

0 20 40
0.2

0.3

0.4

0.5

0.6

0.7

SNR

e

(a)

0 20 40
0

2

4

6

8

10

12

14

SNR

p

(b)

50 100 150 200 250
0.2

0.3

0.4

0.5

0.6

0.7

Iterations

e

(c)

50 100 150 200 250
0

2

4

6

8

10

12

Iterations

p

(d)

1 2 3 4
0.1

0.2

0.3

0.4

0.5

k

e

(e)

1 2 3 4
0

20

40

60

80

100

k

p

(f)

BK−SVD
(B)K−SVD

Fig. 4. Simulation results of the BK-SVD and (B)K-SVD algorithms. The
graphs show the reconstruction error e and the recovery percentage p as a
function of the SNR of the data signals for k = 2 and after 250 iterations (a,
b), as a function of the number of iterations for k = 2 in a noiseless setting
(c, d), and as a function of k in a noiseless setting after 250 iterations (e, f).

d∗ is perfectly recovered for k < 6. However, for k = 6, SAC
fails in reconstructing the block structure d∗, even though the
block sparsity b reaches the lowest possible value (Fig. ??.(f)).
This is a consequence of the inability of OMP to recover the
sparsest approximation of the signals X with k × s = 12
nonzero entries. In terms of e and b, our algorithm performs
nearly as good as the oracle.

B. Evaluating BK-SVD

To evaluate the performance of the BK-SVD algorithm we
assume that the block structure d∗ is known. We initialize
the dictionary D(0) by generating 20 blocks of size 3 where
each block is a randomly generated linear combination of
2 randomly selected blocks of D∗. We then evaluate the
contribution of the proposed BK-SVD algorithm. Recall that
dictionary design consists of iterations between two steps,

7

0 20 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

SNR

e
(a)

K−SVD
BK−SVD+SAC
BK−SVD
oracle

0 20 40
0

20

40

60

80

100

SNR

p

(b)

50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

Iterations
e

(c)

50 100 150 200 250
0

20

40

60

80

100

Iterations

p
(d)

1 2 3 4
0

0.1

0.2

0.3

0.4

k

e

(e)

1 2 3 4
0

20

40

60

80

100

k

p

(f)

Fig. 5. Simulation results of our overall algorithm (BK-SVD+SAC), the BK-
SVD algorithm and the K-SVD algorithm. The graphs show the reconstruction
error e and the recovery percentage p as a function of the SNR of the data
signals for k = 2 after 250 iterations (a, b), as a function of the number of
iterations for k = 2 in a noiseless setting (c, d), and as a function of k in a
noiseless setting after 250 iterations (e, f).

updating Θ using block-sparse approximation and updating the
blocks in D and their corresponding non-zero representation
coefficients. To evaluate the contribution of the latter step,
we compare its performance with that of applying the same
scheme, but using the K-SVD dictionary update step. We refer
to this algorithm as (B)K-SVD. The algorithms are evaluated
as a function of the SNR of the signals X for k = 2 after
250 iterations, as a function of the number of iterations for
k = 2 in a noiseless setting, and as a function of k in a
noiseless setting after 250 iterations. It is clear from Fig. ??
that the simultaneous update of the atoms in the blocks of
D is imperative and does not only serve as a speedup of the
algorithm.

C. Evaluating the Overall Framework

To evaluate the performance of the overall block-sparsifying
dictionary design method, we combine SAC and BK-SVD. At
each iteration we only run BK-SVD once instead of waiting
for it to converge, improving the ability of the SAC algorithm
to avoid traps. Our results are compared with those of K-SVD
(with a fixed number of 8 coefficients) and with those of BK-
SVD (with a fixed block structure) as a function of the SNR,
as a function of the number of iterations. The algorithms are
evaluated as a function of the SNR of the signals X for k = 2
after 250 iterations, as a function of the number of iterations
for k = 2 in a noiseless setting, and as a function of k in a
noiseless setting after 250 iterations (Fig. ??).

Our experiments show that for SNR > 10[dB], the proposed
block-sparsifying dictionary design algorithm yields lower
reconstruction errors (see Fig. ??.(a)) and a higher percentage
of correctly reconstructed blocks (see Fig. ??.(b)), compared
to K-SVD. Moreover, even in a noiseless setting, the K-SVD
algorithm fails to recover the sparsifying dictionary, while our
algorithm succeeds in recovering 93% of the dictionary blocks,
as shown in Fig. ??.(d).

For SNR ≤ 10[dB] we observe that K-SVD reaches lower
reconstruction error compared to our block-sparsifying dictio-
nary design algorithm. This is since when the SNR is low the
block structure is no longer present in the data and the use of
block-sparse approximation algorithms is unjustified. To verify
this is indeed the cause for failure of our algorithm, we further
compare our results with those of an oracle algorithm, which
is given as input the true dictionary D∗ and block structure
d∗. It then uses BOMP to find Θ. Fig. ?? shows that for all
noise levels, our algorithm performs nearly as good as the
oracle. Furthermore, for SNR ≤ 10[dB] we observe that K-
SVD outperforms the oracle, implying that the use of block-
sparsifying dictionaries is unjustified. For k ≤ 3, in a noiseless
setting, the performance of our algorithm lies close to that of
the oracle, and outperforms the K-SVD algorithm. However,
we note that this is not the case for k ≥ 4.

Finally, we wish to evaluate the contribution of the SAC
algorithm to the overall framework. One could possibly fix an
initial block structure and then iteratively update the dictionary
using BK-SVD, in hope that this will recover the block
structure. Fig. ?? shows that the representation error e is much
lower when including SAC in the overall framework. More-
over, BK-SVD consistently fails in recovering the dictionary
blocks. Note, that for the task of dictionary design it is always
beneficiary to aggregate atoms into blocks. Hence, the SAC
algorithm continues grouping atoms until the maximal block
size has been reached, or no further merges can occur (e.g.,
merging any pair of blocks will result in exceeding s). The
resulting block structure has blocks of size s.

D. Experiments on Real-World Data
To further show the usefulness of the proposed approach

we test it on real image data. Many algorithms in image
processing, e.g., denoising, super-resolution, inpainting and
object recognition, are based on decomposing the query image
into patches and replacing each patch with a combination of
the most similar ones in a given database of patches [?], [?],
[?]. For example, in [?] object recognition is performed using
a database of labeled image patches, i.e., the category from
which each patch originated is known. For each patch from the
query image one finds the most similar ones in the database
and extracts their labels. The query image is then classified
according to the labels of the matches from the database using,
e.g., majority voting. In all of these patch-based applications,
the success of the algorithm depends on finding correctly the
nearest neighbors of each patch. This is achieved when the
database of patches provides a good coverage of the space of
all image patches.

Here, we compare the ability of K-SVD and our SAC+BK-
SVD to cover the space of image patches, via the following ex-
periment. We randomly generate a dictionary D of dimension
25× 75 with normally distributed entries and normalize its
columns. We further set the maximal block size to s = 3 and
block sparsity to k = 3. We extract all 5× 5 non-overlapping
image patches from a training image and reshape them into
L = 1800 column vectors of dimension N = 25, which are
used as training signals in X . We then use both K-SVD and
the proposed SAC+BK-SVD for optimizing the dictionary.

8

Next, we take a different image for testing, extract all its
non-overlapping patches and find for each patch its sparse
representation. We find a k · s sparse solution when using the
K-SVD dictionary and a k-block sparse solution when using
the dictionary trained by SAC+BK-SVD. Finally, we compute
the mean reconstruction error over all image patches. We have
repeated this experiment 50 times and report the mean errors
over these 50 trials. The results are presented in Fig. ?? as a
function of the number of iterations in training the dictionary.
As can be seen, the dictionary learned by SAC+BK-SVD leads
to smaller errors, and converges faster than K-SVD.

We have further repeated this experiment, but using the out-
put of K-SVD as the initialization of SAC+BK-SVD instead
of random initialization. The results were highly similar.

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

Iterations

e

KSVD
SAC+BKSVD

(a) (b)
Training image Reconstruction error vs.

number of iterations

(c) (d) (e)
Query image Reconstructed Reconstructed with

with KSVD BK-SVD+SAC
Fig. 6. Each 5 × 5 patch in the query image was replaced with its
corresponding sparse approximation using the dictionaries trained by K-SVD
and SAC+BK-SVD. The latter leads to smaller errors and faster convergence.

Similar to [?] we also experimented with super-resolution.
We extracted L = 2300 training patches of size 8 × 8 from
the image in Fig. ??(a). These patches were used to train
a dictionary of size N × K = 64 × 96, initialized with
random gaussian entries. The allowed size of each block
is s = 3, and the allowed block sparsity was k = 2.
We trained three dictionaries. The first using KSVD with
k · s = 6 nonzero elements, the second using SAC+BK-
SVD with k nonzero blocks, and the third using BKSVD
(with fixed block structure) with k nonzero blocks. The mean
reconstruction errors over the training signals were for KSVD
e = 0.036274 , for SAC+BK-SVD e = 0.032858 , and for
BKSVD e = 0.038445.

Next, we extracted all 8×8 non-overlapping image patches
of the image in Figure ??.(b). The corresponding 64 long
vectors were compressed into 16 dimensions using a sensing
matrix trained by the algorithm of [?]. We then used each
of the trained dictionaries to reconstruct the 64 dimensional
patches. The reconstruction results are presented in Fig. ??(c)-

(e). It can be seen that the proposed SAC+BK-SVD leads to
the smallest errors out of the three.

Finally, we have further extracted all 8 × 8 image patches
with overlaps, of the image in Figure ??.(b). The correspond-
ing 64 long vectors were again compressed into 16 dimensions
using a sensing matrix trained by the algorithm of [?]. We
then used each of the trained dictionaries to reconstruct the
64 dimensional patches. The image was reconstructed by
averaging at each pixel the corresponding values from the
reconstructed patches that include it. The reconstruction results
are presented in Fig. ??(f)-(h). It can be seen again, that the
proposed SAC+BK-SVD leads to the smallest errors out of
the three.

(a) (b)
Training image Query image

(c) (d) (e)
Reconstructed with Reconstructed with Reconstructed with

KSVD BK-SVD BK-SVD+SAC

(f) (g) (h)
Reconstructed with Reconstructed with Reconstructed with

KSVD BK-SVD BK-SVD+SAC
Fig. 7. Super-resolution experiment. Dictionaries were trained by K-SVD,
BK-SVD and SAC+BK-SVD using 8× 8 patches from the training image in
(a). Then, each 8×8 patch in the query image (b) was compressed into 16 di-
mensions. A 64 dimensional approximation was obtained for each compressed
patch using the three dictionaries. (c)-(e) show the obtained reconstruction
with non-overlapping patches. (f)-(h) show the obtained reconstruction after
averaging all overlapping patches. SAC+BK-SVD leads to smallest errors.

E. Choosing the Maximal Block Size

We now consider the problem of setting the maximal block
size in the dictionary, when all we are given is that the sizes of
the blocks are in the range [sl sh]. This also includes the case
of varying block sizes. Choosing the maximal block size s to
be equal to sl will not allow to successfully reconstruct blocks
containing more than sl atoms. On the other hand, setting
s = sh will cause the initial sparse representation matrix Θ,

9

obtained by the OMP algorithm, to contain too many non-
zero coefficients. This is experienced as noise by the SAC
algorithm, and may prevent it from functioning properly. It is
therefore favorable to use OMP with k × sl non-zero entries
only, and set the maximal block size s to be sh.

In Fig. ??, we evaluate the ability of our block sparsifying
dictionary design algorithm to recover the optimal dictionary,
which contains 12 blocks of size 3, and 12 blocks of size 2. As
expected, better results are obtained when choosing sl = 2. In
Fig. ??, the underlying block subspaces are all of dimension
2, but sh is erroneously set to be 3. We see that when sl = 2,
we succeed in recovering a considerable part of the blocks,
even though blocks of size 3 are allowed. In both simulations,
K-SVD uses k × sh non-zero entries, which explains why it
is not significantly outperformed by our algorithm in terms of
representation error. Moreover, the percentage of reconstructed
blocks by our algorithm is relatively low compared to the
previous simulations, due to the small block sizes.

5 10 15 20 25
0.1

0.2

0.3

0.4

0.5

Iterations

e

5 10 15 20 25
0

10

20

30

40

Iterations

p

K−SVD
BK−SVD+SAC (s

l
=2, s

h
=3)

BK−SVD+SAC (s
l
=3, s

h
=3)

(a)

5 10 15 20 25
0.1

0.2

0.3

0.4

0.5

Iterations

e

5 10 15 20 25
0

5

10

15

20

25

Iterations

p

K−SVD
BK−SVD+SAC (s

l
=2, s

h
=3)

BK−SVD+SAC (s
l
=3, s

h
=3)

(b)

Fig. 8. Simulation results of our overall algorithm (BK-SVD+SAC) and
the K-SVD algorithm, with maximal block size sh = 3. The graphs show
the reconstruction error e and the recovery percentage p as a function of
the number of iterations (recall that given our definition of p we declare a
correct recovery when the distance between the recovered block and its best
match is small, i.e., they need not be of the same dimension). (a) The input
data contains 12 blocks of size 2 and 12 block of size 3. (b) The input data
contains 30 blocks of size 2.

V. CONCLUSION

In this paper, we proposed a framework for the design of
a block-sparsifying dictionary given a set of signals and a
maximal block size. The algorithm consists of two steps: a

block structure update step (SAC) and a dictionary update step
(BK-SVD). When the maximal block size is chosen to be 1,
the algorithm reduces to K-SVD.

We have shown via experiments that the block structure
update step (SAC) provides a significant contribution to the
dictionary recovery results. We have further shown that for
s > 1 the BK-SVD dictionary update step is superior to the
K-SVD dictionary update. Moreover, the representation error
obtained by our dictionary design method lies very close to the
lower bound (the oracle) for all noise levels. This suggests that
our algorithm has reached its goal in providing dictionaries
that lead to accurate sparse representations for a given set of
signals.

To further improve the proposed approach one could try and
make the dictionary design algorithm less susceptible to local
minimum traps. Another refinement could be replacing blocks
in the dictionary that contribute little to the sparse representa-
tions (i.e. “unpopular blocks”) with the least represented signal
elements. This is expected to only improve reconstruction
results. Finally, we may replace the time-efficient BOMP
algorithm, with other block-sparse approximation methods. We
leave these issues for future research.

VI. ACKNOWLEDGEMENTS

The research of Lihi Zelnik-Manor is supported by Marie
Curie IRG-208529 and by the Ollendorf foundation. The work
of Yonina Eldar was supported in part by a Magneton grant
from the Israel Ministry of Industry and Trade, and by the
Israel Science Foundation under Grant 170/10. We wish to
thank Ezri Son for his assistance in the empirical evaluation.

REFERENCES

[1] E. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact
signal reconstruction from highly incomplete frequency information,”
IEEE Trans. Inform. Theory, vol. 52, pp. 489–509, Feb. 2006.

[2] D. Donoho, “Compressed sensing,” IEEE Trans. Inform. Theory, vol. 52,
no. 4, pp. 1289–1306, Apr. 2006.

[3] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition
by basis pursuit,” SIAM J. Sci. Comput., vol. 20, no. 1, pp. 33–61, 1999.

[4] R. Tibshirani, “Regression shrinkage and selection via the lasso,” J.
Royal Statist. Soc B, vol. 58, no. 1, pp. 267–288, 1996.

[5] J. Tropp, “Greed is good: Algorithmic results for sparse approximation,”
IEEE Trans. Inform. Theory, vol. 50, no. 10, pp. 2231–2242, Oct. 2004.

[6] S. G. Mallat and Z. Zhang, “Matching pursuits and time-frequency
dictionaries,” IEEE Trans. Sig. Proc., vol. 41, no. 12, p. 33973415, Dec.
1993.

[7] M. Aharon, M. Elad, and A. M. Bruckstein, “The K-SVD: An algorithm
for designing of overcomplete dictionaries for sparse representations,”
IEEE Trans. SP, vol. 54, no. 11, 2006.

[8] K. Engan, S. O. Aase, and J. H. Hakon-Husoy, “Method of optimal
directions for frame design,” IEEE Int. Conf. Acoust., Speech, Signal
Process, vol. 5, pp. 2443–2446, 1999.

[9] B. Olshausen and D. Field, “Natural image statistics and efficient
coding,” Network: Comput. Neural Syst., vol. 2, no. 7, pp. 333–339,
1996.

[10] S. Lesage, R. Gribonval, F. Bimbot, and L. Benaroya, “Learning unions
of orthonormal bases with thresholded singular value decomposition,”
IEEE Conf. on Acoustics, Speech and Signal Processing, 2005.

[11] J. M. Duarte-Carvajalino and G. Sapiro, “Learning to sense sparse
signals: Simultaneous sensing matrix and sparsifying dictionary opti-
mization,” IMA Preprint Series, no. 2211, May 2008.

[12] K. K.-D. J. F. M. B. D. R. K. E. T. W. Lee and T. J. Senowski, “Dictio-
nary learning algorithms for sparse representation,” Neural Computation,
vol. 15, no. 2, pp. 349–396, 2003.

10

[13] Y. C. Eldar and M. Mishali, “Robust recovery of signals from a
structured union of subspaces,” IEEE Trans. Inform. Theory, vol. 55,
no. 11, pp. 5302–5316, Nov. 2009.

[14] K. Gedalyahu and Y. C. Eldar, “Time delay estimation from low rate
samples: A union of subspaces approach,” IEEE Trans. Signal Process.,
vol. 58, no. 6, pp. 3017–3031, Jun. 2010.

[15] Y. Lu and M. Do, “Sampling signals from a union of subspaces,” vol. 25,
no. 2, pp. 41–47, Mar. 2008.

[16] R. Basri and D. Jacobs, “Lambertian refelectances and linear subspaces,”
IEEE Transactions On Pattern Analysis And Machine Intelligence,
vol. 25, no. 2, pp. 383–390, Feb 2003.

[17] A. Y. Yang, J. Wright, Y. Ma, and S. Sastry, “Feature selection in
face recognition: A sparse representation perspective,” UC Berkeley Tech
Report, Aug 2007.

[18] R. Vidal and Y. Ma, “A unified algebraic approach to 2-D and 3-D
motion segmentation and estimation,” Journal of Mathematical Imaging
and Vision, vol. 25, no. 3, pp. 403–421, Oct. 2006.

[19] M. Mishali and Y. C. Eldar, “Blind multiband signal reconstruction:
Compressed sensing for analog signals,” IEEE Trans. Sig. Proc., vol. 57,
no. 3, pp. 993–1009, Mar. 2009.

[20] ——, “From theory to practice: Sub-Nyquist sampling of sparse wide-
band analog signals,” IEEE Journal of Selected Topics in Signal Pro-
cessing, vol. 4, no. 2, pp. 375 – 391, Apr. 2010.

[21] H. J. Landau, “Necessary density conditions for sampling and interpola-
tion of certain entire functions,” Acta Math., vol. 117, no. 1, pp. 37–52,
1967.

[22] F. Parvaresh, H. Vikalo, S. Misra, and B. Hassibi, “Recovering sparse
signals using sparse measurement matrices in compressed dna microar-
rays,” IEEE Journal of Selected Topics in Signal Processing, vol. 2,
no. 3, pp. 275–285, Jun. 2008.

[23] M. Stojnic, F. Parvaresh, and B. Hassibi, “On the reconstruction of
block-sparse signals with an optimal number of measurements,” IEEE
Trans. Sig. Proc., vol. 57, no. 8, pp. 3075–3085, Aug. 2009.

[24] H. Rauhut and Y. Eldar, “Average case analysis of multichannel sparse
recovery using convex relaxation,” IEEE Trans. Inform. Theory, vol. 56,
no. 1, pp. 505–519, Jan. 2010.

[25] Y. C. Eldar, P. Kuppinger, and H. Bölcskei, “Block-sparse signals:
Uncertainty relations and efficient recovery,” IEEE Trans. Sig. Proc.,
Apr. 2010.

[26] Y. C. Eldar and H. Bölcskei, “Block-sparsity: Coherence and efficient
recovery,” IEEE International Conference on Acoustics, Speech, and
Signal Processing, vol. 0, pp. 2885–2888, 2009.

[27] L. Meier, S. V. D. Geer, and P. B
”uhlmann, “The group lasso for logistic regression,” Journal of the Royal
Statistical Society: Series B (Statistical Methodology, vol. 70, no. Part
1, pp. 53–71, 2008.

[28] M. Yuan and Y. Lin, “Model selection and estimation in regression with
grouped variables,” Journal of the Royal Statistical Society: Series B
(Statistical Methodology, vol. 68, no. 1, pp. 49 – 67, Feb. 2006.

[29] R. Vidal, Y. Ma, and S. Sastry, “Generalized principal component
analysis (GPCA),” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 27, no. 11, 2005.

[30] R. V. E. Elhamifar, “Sparse subspace clustering,” IEEE Conference on
Computer Vision and Pattern Recognition, 2009.

[31] Y. Ma, H. Derksen, W. Hong, and J. Wright, “Segmentation of multivari-
ate mixed data via lossy coding and compression,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 29, no. 9, p. 15461562,
Sep 2007.

[32] H. Duda and P. Hart, “Stork, Pattern Classification,” 2001.
[33] S. C. Johnson, “Hierarchical clustering schemes,” Psychometrika,

vol. 32, pp. 241–254, Sep. 1967.
[34] R. Rubinstein, M. Zibulevsky, and M. Elad, “Efficient implementation

of the k-svd algorithm using batch orthogonal matching pursuit,” Tech-
nincal report - CS Technion, 2008.

[35] X. Sun and Q. Cheng, “On subspace distance,” in ICIAR (2), 2006, pp.
81–89.

[36] M. Elad and M. Aharon, “Image denoising via sparse and redundant
representations over learned dictionaries,” IEEE Transactions on Image
Processing, vol. 15, no. 12, pp. 3736–3745, 2006.

[37] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, “Non-local
sparse models for image restoration,” in 2009 IEEE 12th International
Conference on Computer Vision, 2009, pp. 2272–2279.

[38] K. Kavukcuoglu, M. Ranzato, R. Fergus, and Y. Le-Cun, “Learning
invariant features through topographic filter maps,” pp. 1605–1612,
2009.

[39] O. Boiman, E. Shechtman, and M. Irani, “In defense of nearest-neighbor
based image classification,” in IEEE Conference on Computer Vision and
Pattern Recognition, 2008. CVPR 2008. IEEE, 2008, pp. 1–8.

Lihi Zelnik-Manor Lihi Zelnik-Manor received the
BSc degree in mechanical engineering from the
Technion in 1995, where she graduated summa cum
laude, and the MSc (with honors) and PhD degrees
in computer science from the Weizmann Institute
of Science in 1998 and 2004, respectively. After
graduating, she worked as a postdoctoral fellow in
the Department of Engineering and Applied Science
at the California Institute of Technology (Caltech).
Since 2007, she has been a senior lecturer in the
Electrical Engineering Department at the Technion.

Her research focuses on the analysis of dynamic visual data, including video
analysis and visualizations of multiview data. Her awards and honors include
the Israeli high-education planning and budgeting committee (Vatat) three-year
scholarship for outstanding PhD students, and the Sloan-Swartz postdoctoral
fellowship. She also received the best Student Paper Award at the IEEE Shape
Modeling International Conference 2005 and the AIM@SHAPE Best Paper
Award 2005. She is a member of the IEEE.

Kevin Rosenblum Kevin Rosenblum received the
B.Sc. degree in electrical engineering and the B.A.
degree in physics in 2008, and the M.Sc. degree in
electrical engineering in 2011 from the Technion-
Israel Institute of Technology, Haifa, Israel. He is
currently an algorithm engineer with Mobileye’s Ve-
hicle Detection division in Jerusalem, and he is pur-
suing the M.B.A. degree at the Tel-Aviv University.
His main areas of interests include signal processing
algorithms, image processing, and computer vision.

11

Yonina C. Eldar Yonina C. Eldar received the B.Sc.
degree in physics and the B.Sc. degree in electrical
engineering both from Tel-Aviv University (TAU),
Tel-Aviv, Israel, in 1995 and 1996, respectively,
and the Ph.D. degree in electrical engineering and
computer science from the Massachusetts Institute
of Technology (MIT), Cambridge, in 2002.

From January 2002 to July 2002, she was a
Postdoctoral Fellow at the Digital Signal Processing
Group at MIT. She is currently a Professor in the
Department of Electrical Engineering at the Tech-

nionIsrael Institute of Technology, Haifa. She is also a Research Affiliate
with the Research Laboratory of Electronics at MIT and a Visiting Professor
at Stanford University, Stanford, CA. Her research interests are in the broad
areas of statistical signal processing, sampling theory and compressed sensing,
optimization methods, and their applications to biology and optics.

Dr. Eldar was in the program for outstanding students at TAU from 1992
to 1996. In 1998, she held the Rosenblith Fellowship for study in electrical
engineering at MIT, and in 2000, she held an IBM Research Fellowship.
From 2002 to 2005, she was a Horev Fellow of the Leaders in Science and
Technology program at the Technion and an Alon Fellow. In 2004, she was
awarded the Wolf Foundation Krill Prize for Excellence in Scientific Research,
in 2005 the Andre and Bella Meyer Lectureship, in 2007 the Henry Taub Prize
for Excellence in Research, in 2008 the Hershel Rich Innovation Award, the
Award for Women with Distinguished Contributions, the Muriel & David
Jacknow Award for Excellence in Teaching, and the Technion Outstanding
Lecture Award, in 2009 the Technions Award for Excellence in Teaching,
and in 2010 the Michael Bruno Memorial Award from the Rothschild
Foundation. She is a member of the IEEE Signal Processing Theory and
Methods technical committee and the Bio Imaging Signal Processing technical
committee, an Associate Editor for the IEEE TRANSACTIONS ON SIGNAL
PROCESSING, the EURASIP Journal of Signal Processing, the SIAM Journal
on Matrix Analysis and Applications, and the SIAM Journal on Imaging
Sciences, and on the Editorial Board of Foundations and Trends in Signal
Processing.

