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Abstract

Probabilistic models have been previously shown to be
efficient and effective for modeling and recognition of hu-
man motion. In particular we focus on methods which rep-
resent the human motion model as a triangulated graph.
Previous approaches learned models based just on posi-
tions and velocities of the body parts while ignoring their
appearance. Moreover, a heuristic approach was commonly
used to obtain translation invariance.

In this paper we suggest an improved approach for
learning such models and using them for human motion
recognition. The suggested approach combines multiple
cues, i.e., positions, velocities and appearance into both
the learning and detection phases. Furthermore, we in-
troduce global variables in the model, which can represent
global properties such as translation, scale or view-point.
The model is learned in an unsupervised manner from un-
labelled data. We show that the suggested hybrid proba-
bilistic model (which combines global variables, like trans-
lation, with local variables, like relative positions and ap-
pearances of body parts), leads to: (i) faster convergence
of learning phase, (ii) robustness to occlusions, and, (iii)
higher recognition rate.

1. Introduction

Human observers can detect and recognize human activ-
ities with high accuracy and robustness. Previous attempts
to replicate this ability in machines (e.g., [12, 7, 4, 1, 9, 10])
provided encouraging results. In this paper we present a
framework for detection and recognition of human motion
which draws its motivation from Johansson’s experiments
[5]. Johansson showed that the instantaneous positions and
velocities of a few points on a human body, (e.g., the joints
of the body), provide sufficient information to detect human
presence and to understand the gist of the activity. This
was shown to be true even with clutter, and missing body
parts. We therefore represent a human activity as a collec-
tion of body parts moving in a specific pattern. A proba-

bilistic model which captures the positions, velocities and
appearances of the body parts is learned in an unsupervised
manner and is then used for recognition.

The suggested framework builds on top of previous work
[10, 3] which represented human motion models with trian-
gulated graphs. As was shown in [10], triangulated graphs
allow accounting for the correlation between positions and
motions of different body parts, while enabling efficient al-
gorithms. These approaches start by detecting and tracking
candidate body parts in the video sequence. Then an EM-
like method is used to find the triangulated graph which
fits with maximum likelihood the pattern of positions and
velocities. Three major questions that arise from these ap-
proaches are: (i) How to learn models efficiently, (ii) Which
representation yields the best models, i.e., best recogni-
tion rates, and, (ii) How to obtain invariance with respect
to global parameters, such as, translation, scale and view
point. In this paper we try to answer all of these questions.

Previous approaches [10, 3] ignored a significant in-
formation captured in the video sequence: the appear-
ance of the various body parts. The appearance (e.g., col-
ors, texture) of body parts can be significantly different
across sequences, however, within a single video sequence,
the appearances of a particular body part across different
frames are highly correlated. We, thus, suggest an approach
which integrates appearance information into the proba-
bilistic model allowing to learn the appearance of the body
parts in an unsupervised manner, simultaneously with their
positions and velocities. We then show that by utilizing ap-
pearance information the convergence of the learning step
is significantly faster. Furthermore, we suggest an approach
to employ appearance information also in the recognition
phase, which leads to higher recognition rates.

To obtain invariance to changes in global parameters we
suggest a hybrid model which uses a sampling technique
for the estimation of the global variables. In particular,
we show that while previous approaches [10] obtained only
local translation invariance (i.e., at the level of individual
cliques in the triangulated graph), by using the suggested
hybrid model we obtain global translation invariance. Previ-



ous approaches [10] represented the position and velocity of
each body part relative to its “neighbors” in the triangulated
graph. As long as all parts are observed this performs well,
however, when a part is missing the relative positions of
its graph neighbors cannot be computed and one has to fall
back to absolute positions. Fanti et al. [3] showed that rep-
resenting the positions of the body parts relative to a global
centroid yields higher robustness to occlusions. This is so
since having a part missing does not affect the positions of
the remaining parts. In this paper we adopt this represen-
tation and suggest an efficient sampling scheme to estimate
the global translation, or centroid.

The rest of the paper is organized as follows: Section 2
presents the problem definition and notations. Having set
the notations, we describe in detail the suggested proba-
bilistic model in Section 3. The learning of the model pa-
rameters is discussed in Section 4 and the way it is used for
recognition is presented in Section 5. Experiments and re-
sults are described in Section 6. We conclude with a short
discussion in Section 7.

2. Definitions and Notations

Given a video frame we detect and track to the next
frame candidate body parts, referred to asdetections. We
then wish to find the most probable assignment of detections
to body parts while allowing for some detections not to be
assigned and for some body parts to be occluded (missing).
In this section we present notations and definitions required
for the mathematical formulation of the problem.

We use bold-face lettersx for random vectors and italic
lettersx for their sample values. When used without sub-
scriptx andx represent the whole vector. The probability
density (or mass) function for a variablex is denoted by
fx(x). We will omit the subscript when unambiguous.

Let N be the number of detections in the video frame,
and letyj denote thej’th detection. The vector of all the
detections in a frame is thus denoted byy = [yT

1 . . . yT
N ]T .

We represent a human body model usingM body parts. A
part is denoted byxi and the collection of body parts is de-
noted by the vectorx = [xT

1 . . . xT
M ]T . In our implementa-

tion, detections and body parts are represented as ‘points in
motion’, i.e., the vectorsxi andyj are4-dimensional vec-
tors whose entries are the parts’ horizontal position, vertical
position, horizontal velocity and vertical velocity1.

Additionally, each detectionyj and body-partxi have a
corresponding appearance represented by a vectorbj and
ai, respectively. To construct the appearance vectorsb of
the detections we use a3D histogram of the color values in

1Note, that we could have just as well selected a different representa-
tion for the observations and body parts. For example, to represent detec-
tions/parts as blobs we can add entries which capture the shape and size of
the blobs.

HSV space of an11 × 11-pixels patch around the detected
point. The3D histogram is vectorized to obtain the vec-
tor bj . Note, that any other modeling of the appearance is
possible, as long as it can be represented by a vector.

The number of detectionsN is most likely to be different
from the number of body partsM . Note, that even when
N > M , some or even all of theM parts might not have
been detected (i.e., when most or all of the detections are
on the background). We thus introduce a binary random
variableδi ∈ {0, 1} (wherei = 1 . . . M ) which indicates
whether thei’th part has been detected or not.

To specify the correspondence of a body partxi to a par-
ticular detectionyj we introduce a discrete random vari-
ablesi ∈ {1 . . . N} wherei = 1 . . .M . The value forsi is
meaningful only when the body parti is detected, i.e., when
δi = 1. We thus ignore the value ofsi wheneverδi = 0.

When the number of detections is larger than the number
of body parts, i.e., whenN > M , only part of the detec-
tions will be mapped onto body parts. We refer to these de-
tectionsF = sD asforeground, whereD = [i : δi = 1, i =
1 . . . M ]T is the set of the detected parts. The rest of the de-
tectionsB = [1 . . . N ]T \ F are considered asbackground.
We further name a pair of vectorsh = [s, δ] a labeling
hypothesis. Any particular labeling hypothesis determines
a partition of the detections into foregroundF and back-
groundB. The set of detectionsy remains partitioned into
the vectorsyF andyB of the foreground and background
detections, respectively.

Finally, we introduce a hidden variableθ which is a vec-
tor holding the global parameters, such as translation, scale
and view-point. The following table summarizes the param-
eters used in the paper:

Notation Meaning

x position and velocity of body parts
y position and velocity of detections
a appearance of body parts
b appearance of a detections
M number of body parts
N number of detections
δi indicates detection of body parti
s maps body parts to detections

sD = F detections assigned to the foreground
B detections assigned to the background
θ global variables (e.g., centroid)

3. A Hybrid Probabilistic Model

Given a video frame and the corresponding detections
our goal is to find the most probable assignment of detec-
tions to body parts, i.e., the most probable labeling hypoth-
esis [s, δ]. This should be done while allowing for some
detections not to be assigned and for some body parts to be
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Figure 1. Graphical model.

occluded (missing). We start by presenting a hybrid prob-
abilistic model which combines global variables, such as
translation of the whole body, and local quantities such as
relative positions, velocities and appearances of the body
parts. Using such a representation we can learn high-quality
models with invariance to changes in global parameters. In
the testing phase, we can then use the learned model to es-
timate the probability that each frame presents the learned
motion. This is discussed in Section 5.

The most probable assignment of detections to body
parts (labeling) is found by maximizing the joint probabil-
ity density functionf(θ, y, b, s, δ). We start by defining the
probability density functionf(θ, x, y, a, b, s, δ) of both the
hidden and observed variables and then marginalize over
the hidden variablesx anda.

We use the representational conventions that are com-
mon in the learning of graphical models [6]. Figure 1 shows
the suggested graphical model. The position and velocity
xk of the k’th body part depends on the global variableθ
as well as on the positions and velocities of the other body
partsxi with i 6= k. The observed position and velocity of a
detectionyj are influenced (or not) by the position and ve-
locity of a body partxi, depending on the labeling described
by [s, δ]. Similarly, the pair[s, δ] determines whether the
observed appearance of thej’th detectionbj depends (or
not) on thei’th body parts appearanceai. The graphical
model of Figure 1 yields the factorized joint probability:

f(θ, x, y, a, b, s, δ) = (1)

f(δ)f(s|δ)f(y|x, s, δ)f(b|a, s, δ)f(a)f(θ)f(x|θ)
Next, we describe how each factor is modeled.

Modeling presence/occlusion of partsf(δ):
Since we have no a-priori knowledge on the motion of the
person or on the occlusions in the scene, we assume that
each body-part is observed (or not) independently of the
others:

f(δ) =
M∏

i=1

f(δi) =
M∏

i=1

pδi
i (1− pi)1−δi

wherepi is the i’th parts probability of appearing in the
frame. The value forpi can be learned from the data but we
set it to a fixed value of1− 10−15.

Modeling the labelingf(s|δ):
Since we have not seen the detections, all the labelings are
equally likely. At this point we assume the labelssi are
mutually independent. For example, labeling the foot as
detection “2” has no effect on the detection assigned to
the leg. Mathematically this is formulated as:f(s|δ) =∏M

i=1 f(si|δi). This independence assumption is not fully
correct as the labels should be mutually exclusive. We will
relax this independence assumption later on in Section 4.2.
When a body part is present we assume its labels are uni-
formly distributed, i.e.,f(si|δi = 1) = 1/N . When a body-
parti is not detected, we ignore the value ofsi, as it has no
meaning, thus we can set it to have any value we wish. For
convenience we selectf(si|δi = 0) = 1/N , resulting in:

f(s|δ) =
(

1
N

)M

Modeling Positions and Velocities of Detections
f(y|x, s, δ):
Once the labelings, δ is known and the body-parts positions
and velocitiesx are given, it is assumed that the foreground
detectionsyF are conditionally independent and coincide
with the body-parts that originated them. Additionally, we
assume the background detections to be originated from a
uniform probability densityf(yB) = 1

V whereV is some
scalar constant. Therefore, we can write:

f(y|x, s, δ) =
N∏

i=1

f(yi|x, s, δ)

=
∏

j∈D
1{ysj = xj}

∏

k∈B

1
V

= 1{ysD = xD}
(

1
V

)N−|F|
(2)

where 1{condition} = 1 if the condition is true and0
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otherwise.

Modeling Appearance of Detectionsf(b|a, s, δ):
We model the appearance of the detections the same way
we modeled their positions and velocities, i.e.:

f(b|a, s, δ) = 1{bsD = aD}
(

1
V

)N−|F|
(3)

Modeling Appearance of Body Partsf(a):
We model the appearance of each body parts as a Gaussian,
i.e.: f(a) = N (a; µa,Σa).

Modeling Global Variables f(θ):
We model the prior for the global variables as a Gaussian,
i.e.: f(θ) = N (θ;µθ, Σθ).

Modeling Positions and Velocities of Body Partsf(x|θ):
The modeling off(x|θ) depends on the characteristics of
the global variables inθ. In this paper we limit the deriva-
tion to the case where the dependence between the global
and local variables is additive. In particular, we will focus
on the case whereθ is the positional centroid of the body
partsx. To achieve translation invariance we model the po-
sitions of theM body-parts asx = Jθ+xc, i.e., we assume
that a given posex can be interpreted as a localcentered
position (i.e., translation invariant)xc superimposed on the
global displacement in positionθ. HereJ is an index ma-
trix which extracts from a vector of positions and velocities
only the positions, i.e.,J = [ J1 J2 · · · JM ]T where
Ji = diag(1, 1, 0, 0).

We assume the centered positionsxc to be inde-
pendent ofθ and Gaussian distributed, i.e.,f(xc) =
N (xc; µxc , Σxc). As a consequence,x andθ are jointly
Gaussian, and therefore, given the location of the centroid
θ, the model for the positions and velocities of the body
parts is:

f(x|θ) = N (x; µxc + Jθ, Σxc). (4)

3.1. Marginalization

As was discussed above, we obtain the joint proba-
bility f(θ, y, b, s, δ) by marginalizing the density function
f(θ, x, y, a, b, s, δ) over the hidden variablesx anda.

f(θ, y, b, s, δ) =
∫

f(θ, x, y, a, b, s, δ)dxda (5)

= Fθsδ

∫
f(x|θ)f(y|x, s, δ)dx

∫
f(a)f(b|a, s, δ)da

whereFθsδ = f(θ)f(s|δ)f(δ) for brevity.

Combining Eqs. (2),(3) and (5) yields (after a few math-
ematical manipulations which are omitted due to lack of
space, but can be found in [2]):

f(θ, y, b, s, δ) = (6)

Fθsδ

(
1
V

)N−|F|
fxD|sδθ(yF |s, δ, θ)faD|sδ(bF |s, δ)

where fxD|sδθ(yF |s, δ, θ) is the marginalization of
fx|sδθ(·|s, δ, θ) over the undetected body parts, evaluated in
the foreground observationsyF assigned to the body parts
by the labeling variables, andfaD|sδθ(bF |s, δ) is the cor-
responding marginalized factor for the appearances of the
body parts.

3.2. Efficient Model Using Triangulated Graphs

Eq. (6) implies that to maximize the joint probability
f(θ, y, b, s, δ) we need to estimatef(x|θ) and f(a). In
general we would like to assume dependencies between all
body parts and maximize over all possible labelings. Unfor-
tunately, this would make the likelihood maximization pro-
cess computationally infeasible, due to the combinatorial
number of labelings hypotheses that need to be considered.

To simplify the appearance modelf(a) and keep the
number of parameters manageable, we assume the appear-
ances of the body parts are independent, i.e.:

f(a) =
M∏

i=1

f(ai) (7)

To simplify the modeling of positions and velocities, we
adopt an approximation previously suggested in [10, 3].
The dependencies between the body part is represented by
a triangulated graph. This ensures that the probability den-
sity functionf(θ, y, b, s, δ) can we written as a product of
positive potentials, and therefore, efficient algorithms such
as Belief Propagation can be applied to carry out the max-
imization at hand. While the conditional independencies
assumption might be incorrect, experimental results show
that high recognition rates can still be achieved using such
models (see Section 6).

The conditional independencies among positions and ve-
locities of the body parts determine a factorization of their
joint probability density intoM factors orfamilieseach in-
cluding three body parts (we choose a fan-in≤ 2 for each
node, i.e., within each family there is a singlechild body
part and at most twoparentbody parts). The position and
velocity of the child body part depend on those of its par-
ents. The joint density can therefore be written as:

f(x|θ) =
M∏

i=1

f(xi|x[π(i)], θ) (8)
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whereπ(i) are the parents of parti, and each factor is a
conditional Gaussian.

Combining Eqs. (6),(7) and (8) we can rewrite
f(θ, y, b, s, δ) as a product of positive potentials2:

f(θ, s, δ, y, b) =
1
Z

M∏

i=1

Ψi(s[i,π(i)], δ[i,π(i)], θ, y, b) (9)

where each potentialΨi is a Gaussian potential, andZ is a
normalization constant. The derivation of this equation re-
quires a few mathematical manipulations which are omitted
due to lack of space, but can be found in [2]. In the next
section we suggest an efficient algorithm to maximize the
joint probability of Eq. (9).

4. Unsupervised Learning of The Hybrid
Model

The hybrid model of Section 3 combines the observed
variablesy,b, the global centroidθ and the labeling vari-
abless, δ. We start in Section 4.1 by showing how the
global variableθ can be estimated using an efficient sam-
pling technique. We then show (Section 4.2) that given the
global variableθ, the best labelings, δ can be computed
efficiently using belief propagation.

To unsupervisedly learn the parameters and structure of
the model for a particular action, we adopt here an EM-
like procedure that iterates over each frame of a sequence
in which the action is performed. In the M-step we update
the parameters and structure of the model with their current
maximum likelihood (ML) estimate. In the E-step we com-
pute an approximation to the probability density3 of all the
possible labelings given the observations. The above pro-
cess it repeated until the likelihood of the model converges.

4.1. Estimation of the Centroid

Recently, Paskin [8] suggested a highly efficient sam-
pling technique (based on block Gibbs sampling) to esti-
mate variables whose probability density function can be
represented as a linear Gaussian (see [8] for definition). To
use this technique for the estimation of the maximum like-
lihood centroidθ we need to show that given the detections
y,b the conditional probabilityf(θ, s, δ|y, b) can be writ-
ten as a linear Gaussian.

Recall, how in Section 3.2, Eq. (9) we showed that, due
to the assumed conditional independencies, the joint prob-
ability f(θ, y, b, s, δ) can be written as a product of posi-
tive Gaussian potentials. From there, one can prove that

2a positive potential can be viewed as an un-normalized density func-
tion

3We make the simplifying assumption that such density is peaked
around the best labeling, i.e., we assume it to be a delta function around
that labeling.

f(θ, s, δ|y, b) is a product of Gaussian potentials inθ, and
therefore, a linear Gaussian:

f(θ, s, δ|y, b) =
1

Z(y)

M∏

i=1

αθ,iN (θ; µθ,i,Σθ,i) (10)

where αθ,i, µθ,i and Σθ,i are functions of the labeling
s[i,π(i)], δ[i,π(i)], andZ is an unknown normalization factor.
The proof of Eq. (10) is lengthy and is thus omitted from
here but can be found in [2]. Eq. (10) satisfies the required
conditions thus, given a set of detections and their appear-
ances, we can use Paskin’s sampling technique to find the
expected value for the centroid̂θ.

4.2. Finding the Best Labeling

Having estimated the centroid̂θ, and given the detections
y and their appearancesb, we next wish to find the optimal
labeling:

ŝ, δ̂ = arg max
s,δ

f(s, δ|θ̂, y, b) (11)

As was shown in Eq. (9), the joint density function
f(θ, y, b, s, δ) factorizes into a product of positive poten-
tials. Therefore, the conditional density function (modulo a
normalization) can be written in factorized form as well:

f(s, δ|θ̂, y, b) ∼
M∏

i=1

Ψi(s[i,π(i)], δ[i,π(i)], θ̂, y, b) (12)

Given Eq. (12) we can find the best labelingŝ, δ̂ using a
standard max-prod Belief Propagation (see [6]). Unfortu-
nately, nothing prevents the labeling from having repeti-
tions, that is, thek’th detection might be assigned to both
the i’th and j’th body parts:i 6= j,si = sj = k. We thus
revise the maximization process to obtain an admissible la-
beling.

The naive solution to this problem is to allow only ad-
missible labelings by a greedy search over all the possible
labelings. This is infeasible even for models with just a
few parts. Instead, we propose an approximate algorithm
which, although is highly likely to find the best labeling, is
not guaranteed to do so. We examine the performance of
this algorithm in Section 6.

Each potential Ψi depends on a single family
s[i,π(i)], δ[i,π(i)] of labels. The standard Belief Propagation
algorithm involves an exchange of messages among the lo-
cal potentials so that a global agreement is reached by all of
them, over the values fors andδ that maximize the density
function. This is a consequence of the triangulated struc-
ture of the model. To remove the repetitions we start from
one of the potentials and we compute a list of itsK best hy-
potheseŝsk

[i,π(i)], δ̂
k
[i,π(i)], i.e., those that maximize its local
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belief. We then examine each potential in some order and
explore its belief in a higher-likelihood-first order, to extend
the current local solutions to admissible larger partial ones.
When we examine the next potential, we considerK com-
patible4 labelings for each of the current solutions, therefore
obtainingK2 new partial (but larger) solutions. We retain
theK best ones and proceed to the next potential. Once the
last potential is taken into account, we are left withK glob-
ally compatible and admissible solutions, and we pick the
top one. We repeat the above schema for several different
orderings of the potentials, and we choose the overall best
one as our estimate for the best labeling. In the experiments,
to limit computational time, we setK = 20. Although the
proposed approximate algorithm is likely to find the best la-
beling, it is not guaranteed to do so. We verify its accuracy
by experimental validation. See results in Section 6.

5. Recognition

Once the model parameters have been learned recogni-
tion is performed in each frame by maximizing the likeli-
hood off(θ, y, b, s, δ) of Eq. (9). High probability indicates
activity recognition whereas low values indicate the activity
is not present in the frame. Note, that the appearance of the
body parts in the training data and in the testing data are in-
dependent (these depend mainly on the clothing). We thus
suggest two modes of testing:
• Recognition without appearance: In this case we ig-

nore appearance information and use only the positions and
velocities of the body parts. That is, recognition is per-
formed by maximizing the likelihood off(θ, y, s, δ).
• Recognition with appearance: When multiple frames

of the same video sequence are available, we use a fraction
of the frames to learn the appearance of the body parts in
that particular sequence. This is done by first finding the
best labeling for the selection of frames, based on geometry
alone, i.e., by maximizingf(θ, y, s, δ). Then a representa-
tion for the appearance of each body part is constructed and
used to estimate the best labeling likelihood in all the other
frames by maximizingf(θ, y, b, s, δ). Note, that when rec-
ognizing with appearance we actually adapt the model for
each sequence, thus, the actual values produced by the log-
likelihood estimation, for frames taken from different se-
quences, are not comparable. To compare between frames
of different sequences we assign the final score for each
frame the log-likelihood of the geometry alone.

6. Experiments and Results

Our experiments included a training set of 378 frames
taken from a single video sequence showing a single person

4meaning those that do not introduce repetitions within the partial so-
lutions so far achieved

walking from right to left, parallel to the camera. All the
frames were taken with the camera at the same view point
and with the person wearing the same set of clothes. The
testing set included 2688 frames taken from 14 sequences
of various lengths. The testing set included 1101 frames of
right-to-left walking and 1587 frames of other types of mo-
tions, including running, cycling, a driving car, water mov-
ing and walking left-to-right. The sequences were scaled so
that the height of a person would be similar in all of them.
• Faster Learning: We first detect feature points using

the Lucas-Tomasi-Kanade feature detector/tracker [11]. In
training we ignore all points on the background (using back-
ground subtraction). We extract an11 × 11 patch around
each detection point and use a3D histogram with64 bins
to represent the distribution of colors in HSV space of the
patch pixels. The vectorized histogram is used as the ap-
pearance representation of the detected point. We learn the
hybrid probabilistic model withM = 12 parts using the
approach presented in Section 4. Figure 3 compares the
log-likelihood of the learned model while using or not us-
ing appearance information. To learn a model using geo-
metrical information alone we simply drop the factorsf(a)
and f(b|a, s, δ) from the probability function of Eq. (1),
thus maximizingf(θ, y, s, δ) instead off(θ, y, b, s, δ). It
can be seen that using appearance results in significantly
higher convergence rate. That is, the appearance of the
detections reduces the probability of wrong assignment of
body parts to detections. Note, that the actual values of the
log-likelihood in the two cases are not comparable (as one
likelihood is estimated while including appearance and the
other one without it) we thus placed them on two separate
plots and removed the log-likelihood values to avoid confu-
sion.
• Improved Recognition: To evaluate the recognition

quality of the suggested hybrid model we apply the recog-
nition scheme of Section 5 to each pair of frames of the test
dataset. We compare three modes of learning and recogni-
tion: (I) Learning and recognition without appearance. (II)
Learning with appearance and recognition without appear-
ance. (III) Learning and recognition with appearance.

Figure 4 compares ROC curves of the recognition results
for the three proposed modes. It can be seen that using
appearance in both learning and testing resulted in signifi-
cantly higher performance. Interestingly, the poorest results
were obtained for mode II, i.e., when learning with appear-
ance and testing without appearance. We believe the reason
to this is that the model was optimized also for the use of ap-
pearance and not for using geometrical information alone.
• Robustness to Occlusions:The incorporation of the

centroid into the hybrid model was done to obtain trans-
lation invariance and robustness to occlusions. To test
the robustness to occlusions we selected three video se-
quences, with total of 919 frames and added a to all their
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Figure 2. Data. (a) An example video frame from the training video sequence. (b)-(f) Example frames from the testing
data including various types of motions, performed by different objects/people with various appearances (clothing).
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Figure 3. Learning speed. A compar-
ison of the log-likelihoods while learning
a model with and without appearance.
Using appearance information the model
converges significantly faster. The log-
likelihood is not increasing-only since we
use an approximated, yet efficient, algo-
rithm to compute it (see Section 4.2).

frames a virtual occlusion which hides the thighs (see Fig-
ures 5.a,b). We then compare the recognition rates obtained
for the same sequences with and without the occlusion, us-
ing appearance in both learning and recognition. To com-
pute recognition rates we need to select a threshold on the
log-likelihood and classify all frames with log-likelihood
higher/lower than the threshold as detection/no-detection.
We set the threshold according to the ROC curve of the
model which uses appearance in both learning and recog-
nition. The threshold is taken as the “equal error” detec-
tion rate, i.e., the value of the log-likelihood for which
Pdetection = 1 − Pfalse alarm. The results, summarized in
Figure 5.c, show that only a slight decrease in performance
occurred in recognition on the partially occluded frames.

7. Discussion and Conclusions

The approach suggested in this paper employs graphical
models methods for human motion recognition. We have
shown that by incorporating appearance information into

the model we obtain significantly higher performance. Nev-
ertheless, there are still open issues left for future research.
In our experiments, we learned that the quality of the point
tracking has a great effect on the quality of the results. This
depends highly on the photometric conditions, i.e., cloth-
ing, contrast, etc. In the learning phase we can control
(to some extent) these parameters, however, in recognition
a person wearing highly textured clothes will be detected
more reliably than a person wearing homogeneous clothes.
To overcome this limitation we need to develop more ro-
bust body-part detection schemes. For example, instead of
point tracking we could try and use region tracking, which
is likely to provide more consistent detections of the body
parts. Additionally, in our current derivation, the appear-
ance of the body parts was modelled as Gaussianaly dis-
tributed. This assumption is not accurate and we’d expect to
obtain higher performance using more elaborate modelling,
such as a mixture of Gaussians for each body-part. Note,
that these extensions can be integrated with little effort into
the suggested framework.
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(a) (b) (c)

Recognition Rate
Without Occlusion 94.02%

With Occlusion 91.3%

Figure 5. Recognition Under Occlusion. A comparison of the recognition rates using the same data with and
without on occlusion. (a) An example frame from the test dataset. (b) The same frame after introducing an occlusion
over the thighs. (c) Recognition rates. See text for more details.
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Figure 4. Recognition results. A comparison
of ROC curves corresponding to the three modes of
experiments. Using appearance in both learning and
testing yields the best recognition results.
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