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Abstract

We propose a simple probabilistic generative model for
image segmentation. Like other probabilistic algorithms
(such as EM on a Mixture of Gaussians) the proposed model
is principled, provides both hard and probabilistic cluster
assignments, as well as the ability to naturally incorporate
prior knowledge. While previous probabilistic approaches
are restricted to parametric models of clusters (e.g., Gaus-
sians) we eliminate this limitation. The suggested approach
does not make heavy assumptions on the shape of the clus-
ters and can thus handle complex structures. Our experi-
ments show that the suggested approach outperforms previ-
ous work on a variety of image segmentation tasks.

1. Introduction
Image segmentation is a hard task and unsupervised seg-

mentation often results in unsatisfactory results. Incorpo-
rating higher level information on the image content can
significantly improve the segmentation quality. It has been
shown (e.g., [10] [2]) that when one knows which objects
are present in an image, significantly improved segmenta-
tion results can be obtained. These methods, however, are
highly specific for segmenting familiar objects in images,
and do not generalize to other types of knowledge. For ex-
ample, when segmenting a video sequence, one knows that
consecutive frames are highly correlated even when their
content is unknown. Image collections often share repeated
parts, e.g., beach pictures will all include water, sand, and
sky, but the shared parts are not always known a-priori. We
thus seek a general segmentation framework that allows nat-
ural incorporation of such information to boost segmenta-
tion quality.

To date, numerous clustering algorithms have been pro-
posed. We categorize them into three broad classes. The
first consists of non-probabilistic algorithms, such as k-
means [1], mean-shift [3], and agglomerative methods
[4] that are based on some useful heuristics. When the
heuristics match the data they perform well. For example,

k-means provides good results when the data is blob-like
and the agglomerative approach succeeds when clusters are
dense and there is no noise. However, more complex data
structures such as those usually observable in typical im-
ages generally result in the failure of these methods.

The second class consists of probabilistic algorithms,
that estimate explicit parametric models of the data, such
as expectation maximization for fitting Gaussian mixture
models (GMM-EM) [13]. The probabilistic methods are
principled, however, when the data is arranged in complex
and unknown shapes, as is the case for images, they tend to
fail.

Complex data are handled well by the third class of algo-
rithms (which has made them the state-of-the-art in image
segmentation) that consists of the many variants of spectral
factorization [8, 14, 17, 15, 21, 12]. These algorithms do
not make make strong assumptions on the shape of clusters,
and thus generally perform better on images. Unfortunately,
spectral factorization lacks a full probabilistic interpreta-
tion, which makes incorporation of high-level knowledge
quite difficult, if not impossible.

Here we propose a general probabilistic framework that
allows a straightforward incorporation of various types of
prior information, such as those described above. The pro-
posed method can handle complex data structures and does
not require restricting assumptions on cluster distributions.
Furthermore, we show that our approach is a generalization
of GMM-EM that eliminates the constraint of using purely
parametric models, while mantaining all the advantages of
a full probabilistic formulation.

We start by presenting a probabilistic model for cluster-
ing in Section 2. We then show, in Section 2.1, how para-
metric, non-parametric and semi-parametric models can be
used to represent cluster distributions. In Section 2.3 we
suggest a sampling-based technique to infer the underlying
cluster assignment. Finally, empirical evaluation on image
segmentation with varying levels of prior knowledge is pro-
vided in Section 3.



Figure 1. Basic generative model for cluster data.

2. A Probabilistic Model for Clustering
Let x1, . . . , xN be a set of observations in R

D gener-
ated from K independent processes {C1, . . . , CK}. Each
process Ck is described by a density function fk(x). An
observation xi is generated in the following way:

• Select one of the K processes Ck by sampling the hid-
den variable ci according to some multinomial distri-
bution p(k) with parameters θ.

• Draw a point xi according to the process-specific prob-
ability density function fk(x).

Each observation is sampled independently. Figure 1
presents the plate diagram of our model.

Let c−i and x−i be the set of labels and observations
excluding point i. We assume that given cluster assign-
ments c−i for all but the ith point, it is possible to ob-
tain an estimates f̂k(x) for the cluster distributions fk(x),
k = 1, . . . , K. We can then compute the conditional prob-
ability that a new point x originated from each of the K
processes:

p(ci = k | c−i, x)

∝ p(xi|ci = k, x−i, c−i)p(ci = k|c−i, x−i)

= p(xi|ci = k, x−i, c−i)p(ci = k|c−i)

≈ f̂k(x)p(ci = k|c−i), (1)

The prior on the within-cluster distribution p(ci =
k|c−i, x−i) was reduced to p(ci = k|c−i) since, according
to the model, if xi is unknown then the cluster assignment
ci depends only on the cluster assignment c−i of the rest of
the data. So far we have not made any assumptions about
the global structure of the clusters. Our only assumption is
that the data each process fk(x) generates tends to cluster.

In the following sections we describe how the cluster dis-
tributions fk(x) and prior p(ci = k|c−i) are modeled.

2.1. Modeling Cluster Distributions
2.1.1 A Non-Parametric Model

When no information is available on the shape of clusters
we avoid paramtric distributions (which would impose a
possibly incorrect shape for the cluster) and adopt a non-
parametric approach to estimate the densities fk(x). This
is equivalent to placing a little probability “bump” around
each data point and approximating the cluster distribution
as the (normalized) “sum” of the “bumps”.

Given a kernel function K(xi, xj) [19] which measures
the affinity between points xi and xj (i.e., how much we be-
lieve the two points originated from the same process when
all we know is their coordinates xi and xj) and a set of Nk

points drawn from the unknown distribution fk(x), a non-
parametric density estimator for fk(x) is defined as:

f̂k(x) =
1

Nk

Nk
∑

j=1

K(x, xj) (2)

The kernel is chosen according to what is known on the
data. A typical choice would be a Gaussian kernel

Kσj
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1
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where σj may be set according to local analysis as sug-
gested in [22]. Other kernels can be used as well. For ex-
ample, in intensity based image segmentation we may wish
to set to zero the connectivity between far away pixels to
enforce a (strong) locality of the segmentation and to obtain
a sparse problem. The kernel in this case will be a product
of a Gaussian kernel and two “box kernels”:

K(x, xj ) = KL(r, rj)KL(s, sj)Kσj
(l, lj) (3)

where rj , sj are the image coordinates of the j’th pixel and
lj is its intensity. The box kernel is defined as: KL(r, rj) =
I((y−yj)/2L)

2L and I(a) = 1 for |a| ≤ 1 and 0 otherwise. L
is the radius of the box kernel and Kσj

is as defined above.

2.1.2 Parametric Clusters

When it is known a-priori that part (or all) of the clusters are
distributed according to some parametric form one should
incorporate this information. This is easily done within the
proposed framework by using parametric models for the
cluster densities fk(x). For example, when it is believed
the data generated by one cluster is “lumpy”, it can be de-
scribed by a Gaussian distribution: f̂k(x) = N (µ, Σ). Ran-
dom outlier points can be represented as a cluster with uni-
form distribution: f̂k(x) = 1

V , where V is the volume of the
data bounding box. Since generally the model parameters



are unknown, we will estimate them simultaneously with
the assignment. Note, that in the suggested framework the
densities of different clusters are independent, thus differ-
ent models can be used for each (i.e., we can have a mixture
of parametric and non-parametric clusters and a variety of
parametric models).

2.1.3 Hybrid Clusters

The use of parametric models can lead to good segmenta-
tion results, which explains the popularity of methods like
GMM-EM; however, in many cases such assumptions are
too strong. For example, spectral clustering (which does not
assume any structure) outperforms the parametric methods
in most image segmentation tasks. In many cases assuming
a specific parametric model is too restrictive. For example,
a clump can be well represented globally by a Gaussian den-
sity; yet, this description could be too crude and inaccurate
locally, e.g., if it has a jagged boundary.

We thus suggest using a hybrid representation which
combines a parametric and a non-parametric component.
The parametric component captures the known underlying
global structure, while the non-parametric component cap-
tures the local deviation from it. The simplest such repre-
sentation is a convex combination:

f̂k(x) = (1 − λ)
1

Nk

Nk
∑

j=1

K(x, xj) + λgk(x) (4)

where gk(x) is a parametric model, e.g., a Gaussian or a
uniform, and λ ∈ [0, 1] represents the relative influence be-
tween the two terms (recall that both terms are normalized
and sum to 1). In all of our experiments we used λ = 0.1.

2.2. Cluster probabilities
We next suggest an approach to modeling the prior prob-

abilities of the K processes through the distribution of the
hidden variable θ. A common choice for this type of mix-
ture model is to assume θ distributed as a Dirichlet random
variable:

(θ1, θ2, . . . , θk) ∼ Dir(α1, α2, . . . , αK)

Under this assumptions the relative size of the Dirichlet
hyper-parameters αk’s are the suggested ratios between the
cluster sizes, while their sum

∑

k αk represents the level
of confidence in this information. The larger

∑

k αk the
stronger is the belief in the prior about the size of the clus-
ters. Setting all αk to the same value suggests all clusters
have equal probability. Prior kowledge on the distribution of
clusters can easily incorporated by setting αk accordingly.

Following simple calculations it is possible to derive
the expression for the conditional prior term in eq. (1) as:

p(ci = k|c−i) = Nk+αk

N−1+
P

k αk
, where Nk is the size of clus-

ter k without counting observation i, N is the total number
of observations and the αk’s are the hyperparameters of the
Dirichlet distribution for θ.

Other choices for the distribution of the random variable
θ are possible. Of particular interest are non-parametric pri-
ors such as the Chinese Restaurant Process [18], in which
the number of clusters is automatically discovered.

2.3. Inference
To estimate the posterior distribution p(c|x) we propose

using a Gibbs Samper. This leads to:
Algorithm

1. Initialize by assigning at random each pixel to a cluster
ci = k.

2. For each pixel i in the image:

a. Compute the unnormalized probabilities p̃(ci =
k|c−i, x) for all k using Eq. (1).

b. Normalize: p(ci = k|c−i, x) = p̃(ci=k|c
−i,x)

P

k
p̃(ci=k|c

−i,x)

c. Sample from the multinomial distribution p(ci =
k|c−i, x) to obtain new hard cluster assignment
for the label variable ci of point xi.

d. Update model parameters of fk for parametric and
hybrid cluster densities.

e. Move to pixel i + 1.

3. Repeat Step 2 until some stopping criterion (i.e., con-
vergence) has been reached. In our experiments we
stop after 1000 iterations.

4. Repeat Step 2 100 times and collect the hard cluster
assignments as samples for each image pixels.

5. For each data-point its final cluster assignment is taken
as the maximum a-posteriori assignment (i.e., the most
frequent one) out of all the collected samples 1. As-
signment probabilities are set according to label fre-
quencies in the collected samples.

Replacing step 2 with a Maximization of the likelihood
yields a ML estimate of the clustering. If one further con-
straints the clusters to be parametric Gaussians the algo-
rithm is equivalent to EM for Gaussian mixture model. We
have experimented with both options (i.e., sampling and
maximization) and found the sampling based approach to
be preferable. While likelihood maximization works well
in cases were there is one global maxima, it can easily get

1If the distributions that describe the probabilistic model are symmetric
with respect to a permutation of the labels, we sometimes observed the so
called label switching problem [5]. In this case we use k-means instead of
the MAP to detect common change patterns in the label assignments.
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Figure 2. Unsupervised image segmentation. Example results from the two data sets we experimented on. Top three are part of the 16
general pictures and the bottom one is part of the 100 Egret images. Number of clusters was set to 8 general images, and 4 for the Egrets
(all other results are provided in the supplemental material). The manual ratings obtained for the complete data-sets are presented in
Fig. 8. The third and last columns show assignment probabilities, where the color of pixel is a linear combination of the segment markers
according to cluster assignment probabilities. The probabilities obtained using non-parametric representation show smooth gradual
transitions between clusters corresponding to the same image region, e.g., the sky in the top two images.

trapped in local maximum. We have found such a behav-
ior to be highly recurrent in cases where cluster shapes are
complex and their models require a non-parametric compo-
nent.

3. Empirical Evaluation with Varying Levels of
Prior Information

In the previous sections we proposed an unsupervised
approach to clustering. We next wish to evaluate the perfor-
mance of this approach, the ease at which prior knowledge
can be incorporated and its benefits. This is done via a series
of experiments, each utilizing different type of prior infor-
mation. We start with fully unsupervised image segmenta-
tion. We then show how small amount of partial labeling
can be easily incorporated and how the quality of results
is boosted. We conclude with the segmentation of video
frames and image collections, were information is shared
across consecutive frames or similar images.

We compare our results with those of EM2 on a mix-
ture of Gaussians [1] and normalized-cuts [22] since they
provide a probabilistic clustering framework and a state-of-
the-art image segmentation approach, respectively. In all of
the experiments affinities were computed using local scal-
ing [22] for all affinity based methods. To evaluate segmen-
tation quality and to compare between methods we designed
a tool for manually rating results. The tool shows a human
rater the original image, as well as all corresponding seg-

2Our experiments show that inference with EM and with Gibbs sam-
pling on a Gaussian mixture model provide similar segmentation results.
This suggests that the performance of GMM are intrinsic of the probailistic
model and not a consequence of the particular inference method used.

mentation results. The order in which the results are sorted
is random for each image thus the rater cannot correlate the
displayed results with a certain algorithm. Each result needs
to be rates as “good”, “o.k.” or “bad”. All of the presented
experiments were evaluated by 6 unbiased raters. Summary
of rating statistics is provided in Fig. 8.

3.1. Unsupervised image segmentation
Experiments were performed on two image data sets:

The first is a set of 100 images of Egrets [11] where only
image intensities were used to compute affinities. The sec-
ond is a set of 16 general color images (mostly of swim-
mers, since one of the authors loves swimming). Figure 2
shows a few representative image segmentation results (The
results for all other images are provided in the supplemental
material).

Figure 8 shows the rating statistics obtained for both
data-sets. The performance of EM fitting of a mixture of
Gaussians (in both coordinate space and color space) are of
the lowest quality, because assuming image segments can
be approximated by Gaussians is inaccurate. The results by
normalized cut and our suggested approach are compara-
ble with slight preference to our method. Our approach, as
well as EM, naturally provides soft assignment of pixels to
segments (see Figure 2). Such soft assignments often make
more sense, e.g., in ambiguous cases where the transition
between segments is gradual. Furthermore, they provide
more information than hard decisions do. An attempt at
obtaining soft assignments from normalized cuts was pro-
posed in [6]. Their approach lacks, however, a complete
probabilistic interpretation.



(a) (b) (c) (d)
Figure 3. Partial Labeling. A typical result of intensity based im-
age segmentation into 2 clusters (out of a 100 images in the Egret
set of [11]). (a) Original image (b) GMM-EM clustering (c) Nor-
malized cuts (d) Our result with partial labeling. Boundary pixels
were constrained to the background cluster.

Figure 4. Partial Labeling, comparison with GrabCut. Left: in-
put image. Right: Our segmentation result, obtained by manually
labeling part of the image as background (similar to [16]).

3.2. Partial Labeling
While our general framework is unsupervised, some par-

tial information on the assignment of points to clusters is
often available. Such information can be provided in one
of three forms: partial labeling, “must-link” constraints and
“cannot-link” constraints. We next explore all three.

Partial assignment of points to clusters is equivalent to
having observed the labels of some of the (usually hidden)
random variables ci of the model. Such type of constraints
are thus incorporated by fixing the corresponding observed
labels ci during the inference process on the model (de-
scribed in Section 2.3). This leads to a more stable solution
and faster convergence. Figure 3 shows how minimal par-
tial labeling can significantly improve image segmentation
results. The segmentations obtained by our method are of
higher quality than those of GMM-EM (using the same con-
straints). Comparison to spectral factorization is impossible
since labels cannot be fixed. We thus compare our results to
those of graph-cuts methods. Graph-cuts [16] are somewhat
similar in spirit to spectral factorization but require signifi-
cant user interaction and are thus generally of less interest
to us. Figure 4 shows our approach provides comparable
results to those of Rother et. al [16] when the same amount
of user intervention is utilized.

Constraints which force points to reside in the same clus-
ter (“must-link”) can be incorporated by estimating the la-
bels of those points jointly. This corresponds to a modifi-

cation of the model of Fig. 1 where an edge (conditional
dependence) is added between the constrained points. The
“cannot-link” constraints can (in theory) be incorporated, in
a similar manner, by estimating the labels for these points
jointly while enforcing exclusion. While in our inference
method this is easily achievable if the “cannot-link” con-
straints involve only pairs of separated points, it is difficult
to consider exclusion dependencies over a larger number
of points, since the number of possible assignments would
grow exponentially.

Incorporating labeling constraints (of any type) is not
trivial in non-probabilistic methods such as spectral cluster-
ing. Yu and Shi [20] showed how “must-link” constraints
on pairs of points can be incorporated, albeit with some ad-
ditional computational cost. It has not been shown how to
incorporate “cannot-link” constraints or partial labeling in
spectral clustering.

3.3. Temporal coherence in videos
In the previous sections we evaluated performance in

the unsupervised and partially supervised cases. But other
types of prior information are often available. In this sec-
tion we examine segmentation of video frames. Adjacent
video frames are known to be highly correlated regardless
of their content. In this section we show how this can be
incorporated into our segmentation framework and improve
segmentation quality. A related idea was proposed by Jo-
jic and Frey [7] who separated video frames into layered
sprites. Their underlying assumption was that all layers are
shared among the video frames and each layer can undergo
only limited transformations such as translation and occlu-
sion. This does not apply to general videos were the cam-
era moves significantly, resulting in large changes in back-
ground, as well as complex motion of articulated objects,
such as human bodies, which imply large changes in ap-
pearance and shape across video frames. We thus propose
an approach that assumes coherence only across consecu-
tive frames and not throughout the sequence.

Pixel-level segmentation of video sequences is a high di-
mensional problem, since the data-set size equals the overall
number of pixels. Therefore, one has to resort to segment-
ing separately small portions of the video. We will assume
here the video portions are individual frames. This can re-
sult in a set of independent segmentations even for consecu-
tive frames which are highly correlated. To obtain a globally
consistent segmentation one needs to enforce spatiotempo-
ral coherence across frames. This can be done by first seg-
menting each frame independently and afterwards matching
segments across frames. Alternatively, coherence could be
enforced directly during the segmentation task. The latter
is impossible for methods like spectral clustering, which do
not allow incorporating prior information.

On the contrary, our framework is particularly suitable



Figure 5. Video sequence segmentation. Top: Frames 218, 280, 282, 284, 286, and 329 out of a 343 frame long video. Middle: Ncut
segmentation results. Bottom: Our result while enforcing spatiotemporal coherence across frames is significantly better, see also Fig. 8 for
statistics of manual rating. The complete video as well as results on a different video are provided in the supplemental material.

for this purpose. We segment videos frame-by-frame while
propagating information from one frame to the next. We
initialize the segmentation of each frame with the segmenta-
tion result of the previous frame. Since consecutive frames
are highly correlated this on its own speeds-up the compu-
tation (by reducing the number of iterations of the sampler)
and promotes more consistent results. Furthermore, since
our clustering provides cluster assignment probabilities for
each pixel, we detect high confidence pixels and fix their
labels for some iterations. This constrains the segmentation
of each frame to be highly similar to that of its predecessor.
We then release the labels of all pixels and collect samples.
This procedure localizes slowly changing parts of the video,
such as the background, and reduces the computational cost
by speeding up convergence. Following is a short summary
of the proposed video segmentation approach:

1. Segment the first frame of the sequence and obtain
cluster assignment probabilities for each pixel.

2. For all the remaining frames f = 2, . . . , F :

a. For frame f − 1, compute the confidence Ri of
segment assignment of the i’th pixel as: Ri =
(p(ci = kv |x) − p(ci = kw|x)/p(ci = kv|x)
where p(ci = kv |x) and p(ci = kw|x) are the
highest and the second highest cluster assign-
ment probabilities for pixel i.

b. Initialize the sampler for frame f with cluster as-
signment and confidence weights of frame f −1.

c. Run the sampler for N1 iterations while fixing the
labels of the high confidence pixels, Ri > 0.9.

d. Run the sampler for further N1 iterations with all
labels free to change, and collect samples.

e. Set cluster assignment of frame f as MAP estimator
and keep cluster assignment probabilities.

Even though this is a very simple way to impose tempo-
ral coherence algorithm it still show that higher-level infor-
mation can significantly improve the quality of segmenta-
tion. Using more complex (possibly probabilistic) models
for the motion of the object in the video is likely to fur-
ther improve the segmentation results. Figure 5 compares
the results of the proposed approach with those of normal-
ized cuts with post-segmentation segment matching. The
segmentation obtained by normalized cuts is inconsistent
across frames. Our method significantly outperforms both
normalized cuts and GMM-EM3 and returns video segmen-
tations that are both of high quality and consistent across
frames (i.e. the same object is consistently assigned to the
same cluster, denoted by same color, throughout the whole
video sequences). For sanity check, we also compared seg-
mentation results of our method with and without tempo-
ral coherence. Using temporal coherence significantly im-
proved the segmentation quality. Results are omitted due to
lack of space. Please refer to supplemental material for the
complete video sequence as well as other videos.

3.4. Part sharing in image collections
In videos, consecutive frames are known to be highly

correlated. A less constrained scenario is that of segment-
ing images of a collection where images are known to share
parts. For example, a collection can be a set of face im-
ages with varying background, see Figure 7. Although the
pictures are generally different, all of them show a person’s
face in the foreground. We next show how utilizing this can
improve segmentation quality as well as provide coherent

3The GMM-EM model we use for comparison in our experiment is
closely related to the model of Khan and Shah [9], with the main differ-
ence that no information of local velocity is used in the clustering. The seg-
mentation obtained by GMM-EM in our comparisons is consistent across
frames but is of poor quality due to complex shapes of the segments.



results where the distinction between foreground and back-
ground is consistent.

One can address this problem in a number of ways. We
chose a simple solution, as our goal is to show the versatility
of our approach and the ease at which it can be tuned for
specific tasks.

Given a collection of F images, where all images show
a face (of different subjects) with varying background, our
goal is to obtain foreground/background segmentation of
each, as well as to identify the shared foreground (i.e., the
face). The naive solution would be to segment each im-
age independently into two parts and then match segments
to identify the foreground. Instead, we simultaneously seg-
ment all the images in the collection using the hybrid-model
described Sec. 2.1.3 to represent each segment. We then
enforce one cluster to share information from all the im-
ages. That is, the global part of its distribution fk is esti-
mated by gathering information from all the pixels assigned
to the cluster in all the images. For all the other segments
the global term is computed using only the information of
the corresponding image. The local term of each segment
(shared or not) is independent for each image. Note, that we
do not tell the system which part is to be shared. Instead,
this emerges automatically as the most consistent part, in
appearance and average position, across images. In the im-
age collection we experimented with images share only the
face, while the background varies significantly, thus the face
emerges as the shared part.

Figure 7 compares results of foreground/background
segmentation with and without part sharing. As expected,
enforcing coherence across images results both in consis-
tently assigning the person to the foreground as well as im-
proving the quality of segmentation.

3.5. Noisy data
As was discussed in Section 2.1, a benefit of the pro-

posed framework is that different models can be used for
cluster densities. Figure 6 presents an example where this
becomes useful. The data contains three spiral clusters and
random outlier points. Clearly, fitting a mixture of Gaus-
sians will not work on such data. Using normalized cuts to
segment into three clusters discovers the dense spiral clus-
ters but the outliers are arbitrarily assigned to the closest
spiral. Switching to 4 clusters splits one of the spirals. Ap-
plying the suggested probabilistic approach with three non-
parametric clusters and one parametric with a uniform dis-
tribution results in discovering the three spirals and collect-
ing all the outliers into the uniform distribution cluster.

4. Discussion and Conclusions
We have presented a principled probabilistic approach to

clustering that can handle complex cluster shapes by using a

(a) (b)

(c) (d)
Figure 6. Noisy data. (a) Input. (b) Segmentation by normalized
cuts using 3 clusters: the outliers are arbitrarly assigned to the
3 clusters. (c) Segmentation by normalized cuts into 4 clusters:
even with an additional cluster the outliers are assigned to the main
clusters and one of the three clusters is randomly split. (d) Our
segmentation: using a parametric (uniform) distribution for one
cluster results in correctly identifying the three clusters and the
outliers (crosses).

non-parametric representation as well as hybrid parametric
and non-parametric models. The proposed method can in-
corporate prior knowledge on cluster structure and assign-
ment constraints in a principled way and provides proba-
bilistic assignment into clusters. When no prior informa-
tion is available our results are comparable to those of spec-
tral clustering (which is considered state-of-the-art in image
segmentation). However, in cases were some knowledge is
available our method significantly out-performes others.
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