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Abstract

Which one comes first: segmentation or recognition? We
propose a probabilistic framework for carrying out the
two simultaneously. The framework combines an LDA
‘bag of visual words’ model for recognition, and a hybrid
parametric-nonparametric model for segmentation. If ap-
plied to a collection of images, our framework can simulta-
neously discover the segments of each image, and the corre-
spondence between such segments. Such segments may be
thought of as the ‘parts’ of corresponding objects that ap-
pear in the image collection. Thus, the model may be used
for learning new categories, detecting/classifying objects,
and segmenting images.

1 Introduction

Grouping (or image segmentation) and recognition have
long been associated in the vision literature. Three views
have been entertained on their relationship: (a) group-
ing is a useful preprocessing step for recognition: first
you divide up the image into homogeneous regions, then
recognition proceeds by classifying and combining these
regions [1, 2, 3, 4], (b) segmentation is a by-product of
recognition: once we know that there is an object in a
given position, we may posit the components of the ob-
ject and this may help segmentation [5, 6], (c) segmenta-
tion and recognition can be performed independently; in
particular, recognition does not require segmentation nor
grouping [7, 8, 9, 10, 11, 12]. It is important to note that
these views are all true: segmentation and recognition are
not necessary for each other, but both benefit from each
other. It is therefore intuitive that recognition and group-
ing/segmentation might have to be carried out simultane-
ously, rather than in sequence, in order to obtain the best
results. Furthermore: it would be advantageous to combine
both model learning, as well as recognition, with segmenta-
tion. We explore here the idea of jointly carrying out recog-
nition and segmentation – we propose and study what is
perhaps the simplest such probabilistic formulation.

Figure 1: Categorical segments/parts are learned across
multiple images in a collection. As can be seen segments
on the background are colored blue while facial topics are
marked in yellow and red. The background topics are
spread over the entire image space and thus their shape den-
sities are not too informative. The face topics, however,
appear with consistently the same shape. The red topic cap-
tures the left side of the face while the yellow one captures
the top right and neck.

Our work builds upon recent work on recognition and
segmentation. First, we choose to categorize images us-
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ing simple statistics of ‘visual words’ as features. Using
‘bags of visual words’ to characterize the appearance of an
image, or an image patch, combines an idea coming from
the literature on texture, where Leung and Malik [13] pro-
posed vector-quantizing image patches to produce a small
dictionary of ‘textons’, and an idea from the literature on
document retrieval, where statistics of words are used to
classify documents [14]. Early visual recognition papers
using ‘bags of visual words’ considered the image as a sin-
gle bag [15, 16, 12], while recently we have seen efforts
either to classify independently multiple regions per image,
after image segmentation [3, 4] or to force nearby visual
words to have the same statistcs [17]. Second, recent liter-
ature on image segmentation successfully combines the no-
tion that images are ‘piecewise smooth’ with the notion that
segments shapes are more often than not ‘simple’. These
insights have been pursued both with parametric proba-
bilistic models [18, 19], with non-parametric determinis-
tic models [20] and with probabilistic hybrid parametric-
nonparametric models [21]. The latter is a very simple
probabilistic formulation which, as we shall see, combines
gracefully with the popular LDA model for visual recogni-
tion.

Our work most closely builds upon two papers. Rus-
sell et al. [3] first proposed to apply the ‘bags of visual
words’ point of view to image segments, rather than to
the entire image, in the hope of discovering multiple ob-
jects in each image. Our work combines segmentation
and category model learning in one step, rather than first
carrying out segmentation and then categorizing the seg-
ments. While Russell et al.’s segmentation is independent
for each image, in our work segmentation is carried out si-
multaneously and each segment’s definition benefits from
related segments being simultaneously discovered in other
images. Conversely, Andreetto et al. [21] segment an entire
collection of images simultaneously, while discovering the
correspondence between homologous segments. However,
the characteristics that pair segments are restricted to size,
shape and average color. Associating bags of visual words
to each segment allows us to discover more interesting vi-
sual connections between corresponding segments, and thus
discover visual categories.

Objects are often of complex appearance, therefore, one
cannot hope to always be able to segment images into com-
plete objects. Instead, we follow the approach of Todor-
ovic and Ahuja [22] that proposed to first segment images
into object parts with consistent appearance (e.g., eye, eye-
brow, nose, etc.) and then build object models by learning
the geometric arrangement of parts. Since in this work the
segmentation of each image was performed independently,
the detected parts of the same object in two different im-
ages could lack consistency. For example, in one image one
could get the nose as a segment while in another image the

nose could be joined into a single segment together with the
cheeks. Our goal is to simultaneously segment and learn
categorical object parts, therefore, obtaining consistent im-
age segmentations of entire collections (see Fig. 1).

In Section 2 we introduce our probabilistic model. In
Section 3 we describe how to carry out inference. Section 4
presents a number of experiments. Our concluding remarks
are in Section 5.

2 Learning categorical segments

Our goal is to learn categorical segments in a collection
of images. We achieve that by simultaneously segment-
ing images and discovering correspondences between seg-
ments appearing in different images. To this end, we pro-
pose a model for image formation (see Fig. 2), which can
be viewed as a probabilistic formulation of the model of
Russell et al. [3], but here segmentation and recognition
happen simultaneously. It can also be seen as an extension
of the image segmentation model proposed by Andreetto et
al. [21] where image segments are represented by a distri-
bution of visual words, on top of local appearance.

The model represents a collection of M images Im. An
image is represented by N regularly spaced sample pixels
(e.g. one sample per pixel). At each sample pixel n we
measure a feature vector xn, for example the pixel’s posi-
tion and RGB values, i.e., xn = [row, column, R, G, B].
We further extract a fixed size ‘visual word’ wn centered
at pixel n. In our implementation, visual words are repre-
sented as vector-quantized filter-responces as in [23], but
other discrete representations can be used as well.

Each image is formed of K regions (segments) whose
statistics are shared across images. Each segment k in im-
age m has a probability distribution fk,m of feature vec-
tor values xn, and a probability distribution φk of the vi-
sual words wn. Note, that the distributions fk,m of feature
vectors are independent for each image while the distribu-
tions of visual words φk are shared across images. This is
because we assume that the appearance of an object part,
which is captured by the visual words distribution, is simi-
lar in all images, while the position and colors of the part in
a particular image are independent of the other images. For
example, a car can be of many different colors and appear
in various image locations, however, its overall appearance,
as described by the visual words, is the same in all images.
We model the RGB distributions fk,m with the hybrid non-
parametric model proposed by Andreetto et al. [21], while
for the φk we use an LDA model, as proposed by Fei-Fei et
al. [12] and Sivic et al. [24]. In other words, if we switch off
the xn component, the model reverts to an LDA one, while,
if we switch off the wn component, the model reverts to
model of Andreetto at al. [21]
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Figure 2: Left: Basic generative model for cluster data. The two gray nodes xn and wn represent the only two observed
quantities in the model: the feature vectors (position and color) and the visual words associated with each pixel. The nodes
cn, fk,m, φk, and θm are hidden quantities that represent the segment assignment for xn and wn, the probability density
of the feature vectors in segment k of image Im, the visual word distribution for segment k, and the size of the segments
in image Im, respectively. Finally the two squares with rounded corners α and ε represent the hyperparameters for the
Dirichlet distributions over θm and φk respectively. Right: Visualization of image representation. An image is represented
by a collection of N patches with their corresponding positions and colors xn and visual words wn. The densities f11 and
f12 represent the shape and appearence of two corresponding segment in image 1 and 2. The distribution φ1 represents the
visual words statistics for topic 1 for all the images.

In this model, visual words are grouped by segments.
This enables learning topics that are related to object parts
rather than to whole scenes, as is the case in the standard
“bag of words” representation over the entire image. A
key aspect of the proposed model is that the densities fk,m

allow grouping into a single image segment all the visual
words generated from the corresponding topic distribution
φk. Moreover, depending on the characteristics of the den-
sities fk,m it is possible to enforce different constraints. For
example, assuming a Gaussian distribution over the pixel
positions in the image, as in Sudderth et al.[25], results in
a spatial grouping of visual word generated from the topic
φk.

Our model assumes that the feature vectors xn and the
visual words wn associated with pixel are independent
given the hidden variables cn, the topic assignment for the
pixel. This assumption is not necessarily correct since in
practice both may depend on the local pattern of intensities.

2.1 Modeling segment shape and appearance

The densities fk,m are the glue that binds together the el-
ements within the segments in the image collection. The
quality of these models will help group visual words be-
longing to the same topic. However, the segments in an
image can have complex shapes and are not easily modeled
by a Gaussian or similar density.

A probabilistic model for representing image segments
that does not constrain the segment to have a particular
shape or appearance is the one proposed by Andreetto et

al. [21]. In this model the densities are estimated in a non
parametric way [26]. Given a kernel function K(u, w) and
a set of Nk feature vectors x1, x2, ..., xNk

drawn from the
density fk,m, it is possible to obtain an estimate of the true
density as:

f̂k(x) =
1

Nk

Nk∑
j=1

K(x, xj) (1)

A typical choice for the kernel function between two points
is the Gaussian kernel:

Kσj (x, xj) =
1

2πσ2
j

D/2
exp

(
−||x − xj ||2

2σ2
j

)

where the scale parameter σj may be set according to lo-
cal analysis as suggested in [27]. Given two feature vec-
tors xi and xj , the kernel function K(xi, xj) measures the
“affinity” between two points, i.e. how likely it is that the
two vectors to be in the same segment. These affinities are
the same as those used in other segmentation methods like
spectral clustering [20] and mean-shift [28].

2.2 Modeling topics of visual words

Following the LDA model [14], each visual word wn

in a given segment k is assumed to be sampled from a
topic/segment multinomial distribution with parameters φk .
All the φk multinomial coefficients are sampled from the
same prior distribution: a symmetric Dirichlet distribution
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with scalar parameter ε:

φk ∼ Dir(ε) (2)

wn|φk ∼ Multinomial(φk)

The K topic/segment distributions are not image specific
like the densities fk,m, but are rather shared within the
entire collection. This allows coupling segment statistics
across different images based on the distribution of visual
words that they contain.

2.3 Sharing information on shape and ap-
pearance

The model we presented so far assumes the densities fk,m

are independent for each image. Sometimes, however, the
shape and appearance of segments are also consistent across
images. For example, faces have similar shapes in all im-
ages. In these cases, it can be useful to share some infor-
mation between the densities fk,m. To share information
on shape and colors we adopt the hybrid semi-parametric
density representation proposed in [21]. This models den-
sities as a weighted sum of a Gaussian term and a non-
parametric term. We keep the center of the Gaussian and
the non-parametric term independent for each image. Only
the covariance of the shape densities is then shared across
images. This is because the actual position of the segment
is independent in each image, while the shape (captured by
the covariance) is shared. We can further decide that a cer-
tain number of segments are shared while the rest are inde-
pendent. This corresponds to data where only part of the
content is shared across images. For example, in a collec-
tion of face images the background of each image can be
different and independent from all other images.

3 Inference

We denote by boldface letter vectors of all values, e.g.,
c = [c1, . . . , cN ]. To estimate the posterior distribution
p(c|x,w) we use a Gibbs sampling inference algorithm.
Let p(ci|c−i,x,w) be the posterior distribution of the hid-
den class label ci of the i’th pixel given the class labels c−i

of all pixels but i, all feature vectors x and all visual words
w. This yields:

p(ci = k|c−i,x,w) ∝
p(xi, wi|ci = k,x−i,w−i, c−i)p(ci|c−i). (3)

The feature vectors xi and visual words wi are assumed to
be independent given ci. We can, therefore, decompose the
likelihood term as the product:

p(xi, wi|ci = k,x−i,w−i, ci) =
p(xi|ci = k,x−i, c−i)p(wi|ci = k,w−i, c−i). (4)

The first term of of Eq. 4 is the likelihood of the feature vec-
tor xi to be in the k-th segment. Using the non-parametric
approximation of Eq. 1 this term can be approximated as:

p(xi|ci = k,x−i, c−i) =
1

Nk

∑
j∈Sk

K(xi, xj) (5)

where the kernel values K(xi, xj) = Aij represent the
affinity between xi, and xj

1, Sk is the set of feature vectors
in segment k, excluding the vector i, and Nk the cardinality
of segment Sk.

The second term of Eq. 4 is the likelihood of the visual
word wi to belong to the topic distribution φk. Given the
conjugate prior over φk (see Eq. 3) we obtain:

p(wi, |ci = k,w−i, c−i) =
Nwi,k + ε

Nk + εV
, (6)

where Nwi,k is the number of pixels with visual word wi

assigned to segment k in all the images of the collection,
and ε is the hyperparameter of the Dirichlet prior over the
topic distributions φk’s.

Similarly, the prior term of Eq. 3 can be written as:

p(ci = k|c−i) =
Nk + αk

(Nm − 1) +
∑

k αk
, (7)

where Nk if the cardinality of segment Sk in image m, Nm

is the number of pixels in image m and αk are the hyperpa-
rameters of the Dirichlet prior over θm.

Combining Eq.5, Eq. 6, and Eq. 7 we obtain the follow-
ing expression for the conditional probabilities used by the
Gibbs Sampling algorithm:

p(ci = k|x,w, c−i) ∝ (8)
1

Nk

∑
j∈Sk

K(xi, xj)
Nwi,k + ε

Nk + εV

Nk + αk

(Nm− 1) +
∑

k αk
.

All the quantities in Eq. 8 can either be precomputed, like
the affinities K(xi, xj) = Aij , or updated very efficiently.

Given the samples from p(c|x,w) by Gibbs sampling, it
is possible to assign each pixel to a segment using the MAP
estimator. The segment distributions fk,m and the topic dis-
tributions φk can be estimated given the assignment, (see
Sections 2.1,2.2).

4 Empirical evaluation

In all our experiments image dimensions ranged between
100 × 100 to 240 × 320 depending on the database. Fol-
lowing the approach of Fei-Fei et al. [12] we extract the

1The Aij are the entries of the affinity matrix used by the Normalized
Cut segmentation algorithm. They can be precomputed before the infer-
ence step.
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Figure 3: Segmentation-recognition results on the MSRC data-set of [29]. Each topic is marked by a different color. Our
system automatically segmented image of the same category consistently. Grass is marked by magenta, sky with yellow and
purple, trees with green, etc.

visual words sampling with a dense grid of 5 pixels step. At
each location of the grid a patch descriptor is computed by
considering the response of a filter bank [23]. This descrip-
tor has dimension 17. A subset of the extracted descriptors
is used to construct a visual dictionary using K-means (see
Sivic et al. [24]). In all our experiments we use a dictionary
of 256 words.

In all our experiments the shape and appearance densities
fk,m are independent for each image while topics of visual
words are shared. We use the intervening countours method
[31] to compute the affinities between pixels.

We tested our system on three public databases:
MSRC [29] database, the LabelMe [32] subset used by [3]
and the scene database of [30]. Note, that we do not use any

supervision. Figures 3,4 and 5 present results of learning
categorical segments with K = 10. Our system discov-
ers shared segments such as grass, faces, and sky. Note,
that methods such as [3] that first segment images and then
classify segments are error prone due to inconsistent seg-
mentation. For example, in [3] cars are often merged with
the road and trees are merged with skies. Our method learns
shared categorical segments and therefore provides consis-
tent segmentation of entire collections.

When using 20 topics, the running time of our system on
the MSRC dataset (240 images) is about 4350 seconds on a
Pentium 4 CPU (18 second per image).

For quantitative evaluation we computed the success rate
of fully unsupervised classification on the scene and MSRC
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Figure 4: Top two rows: sample images and corresponding segmentation. Bottom: Four sample topics/segments learned
from the LabelMe database. Each images contains 16 segments from a specific topic. The four topics represent four different
elements of a possible street scene: “tree/foliage”, “buildings”, “street pavement”, and “sky”, The segmented images, as well
as the topics show the consistency we obtain across images in the collection.

databases. Each image was represented by its distribution
over topics. We then applied the approach of [27] to clus-
ter the images and adopted the best bipartite graph match to
find the optimal correspondence between the obtained clus-
ters and the ground truth ones. The resulting overall clas-
sification precision was ∼ 38% for the scene database and
∼ 48% for the MSRC database. While lower than the re-
ported values in [4, 12], note, that there 100 images were

used for training, while our approach is fully unsupervised.
Furthermore, it was shown in [12] that reducing the number
of training images to 5 dropped the precision to below 30%.
Our approach significantly outperforms this result.

Figure 1 shows what can be obtained by our system
when both topics and shape are shared across images. The
collection included 30 images of faces from the Caltech-4
database. The images were taken with varying backgrounds
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Figure 5: Four sample topics/segments learned from the Scene database [30]. The variance within each category here is high
therefore detection of categorical segments is challenging. Our visual words representation incorporates color information,
therefore skies were assigned to two topics, light blue and dark blue.

thus the topics corresponding to the background are var-
ied in shape and appearance, while the faces are consistent
across images. We show segmentation results where top-
ics corresponding to the background are colored in various
shades of blue, while topics corresponding to the face are
colored in red and yellow. Since both topics of visual words
and shape and appearance are shared across images in this
case, the “red” and “yellow” topics have consistently simi-
lar shapes in all images. See Fig. 1.

5 Conclusions

We proposed a simple probabilisitic approach to segment
and recognize simultaneously consistent object parts. Our
experiments are the first to obtain simultaneously segmen-
tation and categorization without supervision in a consistent
one-step process.

Our system differs from previous work, which either cas-
caded or interleaved segmentation and recognition, while

we integrate them into a single process.
Our results should be seen as a proof of principle. More

informative features, such as texture, stereoscopic disparity
and motion flow could be added. The consistent probabilis-
tic model lends itself easily to semi-supervised and super-
vised learning as well.
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[16] Gy. Dorkó and C. Schmid, “Selection of scale-invariant parts
for object class recognition,” in ICCV ’03: Proceedings of
the Ninth IEEE International Conference on Computer Vi-
sion, Washington, DC, USA, 2003, p. 634.

[17] X. Wang and E. Grimson, “Spatial latent dirichlet alloca-
tion,” in Advances in Neural Information Processing Systems
(NIPS), Vancouver, Canada, 2007.

[18] Z. Tu and S.-C. Zhu, “Image segmentation by data-driven
markov chain monte carlo,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 24, no. 5, pp. 657–673, 2002.

[19] P. Orbanz and J. M. Buhmann, “Nonparametric bayesian
image segmentation,” International Journal of Computer Vi-
sion, 2007.

[20] J. Shi and J. Malik, “Normalized cuts and image segmenta-
tion,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 22, no. 8, pp. 888–905, 2000.

[21] M. Andreetto, L. Zelnik-Manor, and P. Perona, “Non-
parametric probabilistic image segmentation,” in Interna-
tional Conference on Computer Vision (ICCV), 2007.

[22] S. Todorovic and N. Ahuja, “Extracting subimages of an un-
known category from a set of images,” in IEEE Conference
on Computer Vision and Pattern Recognition (CVPR’06) -
Volume 1, New York, NY, USA, 2006, pp. 927–934.

[23] J. Winn, A. Criminisi, and T. Minka, “Object categoriza-
tion by learned universal visual dictionary,” in ICCV ’05:
Proceedings of the Tenth IEEE International Conference on
Computer Vision, Beijing, China, 2005.

[24] J. Sivic, B. C. Russell, A. A. Efros, A. Zisserman, and W. T.
Freeman, “Discovering objects and their location in images,”
in International Conference on Computer Vision (ICCV),
2005.

[25] E. B. Sudderth, A. Torralba, W. T. Freeman, and A. S. Will-
sky, “Learning hierarchical models of scenes, objects, and
parts,” in ICCV ’05: Proceedings of the Tenth IEEE Interna-
tional Conference on Computer Vision, Beijing, China, 2005,
pp. 1331–1338.

[26] L. Wasserman, All of Nonparametric Statistics, Springer,
2006.

[27] L. Zelnik-Manor and P. Perona, “Self-tuning spectral cluster-
ing,” in Advances in Neural Information Processing Systems
(NIPS), 2005, pp. 1601–1608.

[28] D. Comaniciu and P. Meer, “Mean shift: a robust approach
toward feature space analysis,” IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, vol. 24, no. 5, pp.
603–619, 2002.

[29] A. Criminisi, “Microsoft research cambridge object recog-
nition image database, version 1.0,” 2004.

[30] A. Oliva and A. Torralba, “Modeling the shape of the scene:
a holistic representation of the spatial envelope,” Interna-
tional Journal of Computer Vision, , no. 42, 2001.

[31] Timothee Cour, Florence Benezit, and Jianbo Shi, “Spectral
segmentation with multiscale graph decomposition,” in Pro-
ceedings of the 2005 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR’05) - Vol-
ume 2, Washington, DC, USA, 2005, pp. 1124–1131, IEEE
Computer Society.

[32] B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Free-
man, “Labelme: a database and web-based tool for image
annotation,” 2005.

8


