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Abstract. The traditional subspace-based approaches to segmentation
(often referred to as multi-body factorization approaches) provide spa-
tial clustering/segmentation by grouping together points moving with
consistent motions. We are exploring a dual approach to factorization,
i.e., obtaining temporal clustering/segmentation by grouping together
frames capturing consistent shapes. Temporal cuts are thus detected at
non-rigid changes in the shape of the scene/object. In addition it pro-
vides a clustering of the frames with consistent shape (but not necessarily
same motion). For example, in a sequence showing a face which appears
serious at some frames, and is smiling in other frames, all the “serious
expression” frames will be grouped together and separated from all the
“smile” frames which will be classified as a second group, even though
the head may meanwhile undergo various random motions.

1 Introduction

The traditional subspace-based approaches to multi-body segmentation (e.g., [6,
7, 9]) provide spatial clustering/segmentation by grouping points moving with
consistent motions. This is done by grouping columns of the correspondence ma-
trix of [17] (we review the definition in Section 1.1). In this work we show that to
obtain temporal grouping of frames we cluster the rows of the same correspon-
dence matrix instead of its columns. We show that this provides grouping of
frames capturing consistent shapes, but not necessarily same motion. We further
show that, to obtain such shape-based clustering of frames we need not develop
any new segmentation/clustering scheme. We can use any of the existing algo-
rithms suggested for clustering points (e.g., [6, 7, 9]). But, instead of applying
them to the correspondence matrix as is, we apply them to its transpose.

Note, that spatial “multi-body factorization” [6, 7, 9] usually provides a highly
sparse segmentation since commonly the number of points which can be tracked
reliably along the sequence is low. Dense spatial segmentation requires dense
optical flow estimation (e.g., [11]). In contrast, a small number of tracked points
suffices to obtain a dense temporal clustering of frames, i.e., a classification of all
the frames in the video clip. Furthermore, the dimensionality of the data, which
is one of the major difficulties in spatial multi-body factorization, is significantly
smaller for temporal segmentation. To obtain dense spatial factorization of the
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entire image (e.g., [11]), the number of points equals the number of pixels in the
image which can be extremely large (hundreds of thousands of pixels). This is not
the case with temporal factorization. The number of frames in the video clip is
usually only tens or hundreds of frames, and therefore the temporal factorization
is not time consuming.

The standard approaches to temporal segmentation cut the video sequence
into “scenes” or “shots”, mainly by drastic changes in image appearance (e.g.,
[20, 16, 12]). Other approaches are behavior based (e.g., [19, 15]) and segment
the video into sub-sequences capturing different events or actions. The approach
suggested here is fundamentally different and provides a temporal segmentation
and clustering of frames which is based on non-rigid changes in shape. For ex-
ample, in a sequence showing a face at some frames serious and in other frames
smiling, all the “serious expression” frames will be grouped together and sepa-
rated from all the “smile” frames which will be classified as a second group, even
though the head may meanwhile undergo various random motions.

Our way of formulating the problem provides a unified framework for analyz-
ing and comparing a number of previously developed independent methods. This
new view of previous work is described in Section 4. For example, we show that
the technique of Rui & Anandan [15] can be reformulated in terms of the factor-
ization approach. Our analysis illustrates that their approach will detect cuts at
large changes in motion, whereas we detect cuts at non-rigid shape changes. In a
different work, Rao & Shah [14] suggested a view-invariant recognition method
for complex hand movements. In Section 4 we show that the similarity constraint
they use for matching shapes is equivalent to the one we use for separating be-
tween shapes.

We start by defining notations and reviewing the background to the multi-
body factorization approach in Section 1.1. In Section 2 we present our approach
to temporal factorization of shape and in Section 3 we explore its similarities to
and differences from the standard spatial factorization of motion. As mentioned
above, we review some related works in Section 4 and summarize in Section 5.

1.1 Background on Factorization Methods

Let I1, . . . , IF denote a sequence of F frames with N points tracked along the
sequence. Let (xf

i , y
f
i ) denote the coordinates of pixel (xi, yi) in frame If (i =

1, . . . , N , f = 1, . . . , F ). Let X and Y denote two F × N matrices constructed
from the image coordinates of all the points across all frames:
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(1)

Each row in these matrices corresponds to a single frame, and each column
corresponds to a single point. Stacking the matrices X and Y of Eq. (1) vertically
results in a 2F × N “correspondence matrix” W =

[

X
Y

]

. It has been previously
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shown that under various camera and scene models [17, 8, 5] the correspondence
matrix W of a single object can be factorized into motion and shape matrices:
W = MS (where M and S are low dimensional). When the scene contains
multiple objects (see [6, 7]) we still obtain a factorization into motion and shape
matrices W = MS, where M is a matrix containing the motions of all objects
and S is a block-diagonal matrix containing the shape information of all objects.

2 Temporal Factorization

The traditional subspace-based approaches to multi-body segmentation (e.g.,
[6, 7, 9]) provide spatial clustering of image points by grouping columns of the
correspondence matrix W = MS. Note, that in the correspondence matrix W

every column corresponds to a point and every row corresponds to a frame. Thus,
to obtain temporal clustering of frames we will apply clustering to the rows of
W instead of its columns. In this section we discuss the physical meaning of this
temporal clustering of frames and suggest methods for obtaining it.

When factoring the correspondence matrix W into motion and shape, the
columns of the motion matrix M span the columns of W and the rows of the
shape matrix S span the rows of W . Hence, clustering the columns of W into in-
dependent linear subspaces will group together points which share the same mo-
tion. Equivalently, clustering the rows of the correspondence matrix W will group
frames which share the same shape. Luckily, to obtain such row-based segmen-
tation/clustering we need not develop any new segmentation/clustering scheme.
We can use any of the existing algorithms suggested for segmenting/clustering
columns (e.g., [6, 7, 9]). But, instead of applying them to W , we will apply them
to WT . We next show why this is true.

When the scene contains multiple (K) objects moving with independent mo-
tions, and the columns of W are sorted to objects, then according to [6] the
resulting shape matrix has a block diagonal structure:

W = [W1, . . . ,WK ] = [M1, . . . ,MK ]







S1 0
. . .

0 SK






(2)

where Wi = MiSi is the correspondence matrix of the i-th object, with motion
Mi and shape Si. The correct permutation and grouping of columns of W into
W1, . . . ,WK to obtain the desired separation into independently moving objects
was accordingly recovered [6, 7] by seeking a block-diagonal structure for the
shape matrix S. In other words, to obtain spatial segmentation of points we
group the columns of W into independent linear subspaces by assuming that W

can be factored into a product of two matrices, where the matrix on the right
has a block diagonal form.

Now, taking the dual approach: When the sequence includes non-rigid shape
changes (Q independent shapes) and the rows of W are sorted according to
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shape, then the resulting motion matrix has a block diagonal structure:

W =







W̃1

...

W̃Q






=







M̃1 0
. . .

0 M̃Q













S̃1

...

S̃Q






(3)

The permutation and grouping of rows of W into W̃1, . . . , W̃Q to obtain the
desired separation into frames capturing independent shapes can therefore be
obtained by seeking a block-diagonal structure for the motion matrix M .

Note, however, that if we now take the transpose of W we get:

WT = [W̃T
1

, . . . , W̃T
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(4)

That is, the matrix W T can be factored into a product of two matrices where
the matrix on the right is block diagonal. This is equivalent to the assumption
made in the factorization of W to obtain column clustering. Thus, we can use
any of the algorithms suggested for segmenting/clustering columns (e.g., [6, 7,
9]), however, instead of applying them to W we will apply them to W T . Our
approach to subspace-based temporal clustering/factorization can therefore be
summarized as follows:

Given a video clip of a dynamic scene:

1. Track reliable feature points along the entire sequence.
2. Place each trajectory into a column vector and construct the corre-

spondence matrix W =
[

X
Y

]

(see Eq. (1))
3. Apply any of the existing algorithms for column clustering (e.g.,

“multi-body factorization” of [6, 7, 9]), but to the matrix W T (in-
stead of W ).

Note, that when we say “independent shapes” we refer to independence be-
tween rows of different shape matrices (and not between columns/points). Inde-
pendence between rows of two shape matrices occurs when at least part of the
columns in those matrices are different. Recall, that the matrix S corresponding
to a rigid set of points is a 4 × N matrix where each column holds the homoge-
neous coordinates [X,Y, Z, 1]T of a 3D point. Rigid shape changes can be viewed
as the same set of points undergoing a different rigid motion, and therefore still
have the same shape. However, non-rigid shape changes imply that some of the
points move differently than others, i.e., some of the columns of the shape ma-
trix change differently than others. This will lead to a different shape matrix
and thus to assigning these frames to separate temporal clusters. Since every
4 × N shape matrix has a row of 1’s there is always partial linear dependence
between shape matrices. To overcome that, we can use the Tomasi-Kanade [17]
approach for removing the translational component by centering the centroid of
the tracked points. Then the row of 1’s is eliminated from the shape matrix, and
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we obtain full linear independence. Alternatively, some of the previously sug-
gested approaches for sub-space segmentation can handle partial dependencies.
In particular, we used the spectral clustering approach suggested in [13].

To illustrate this, Fig. 1 displays frames from a sequence showing a hand
first open and then closed, while rotating and translating. As long as the hand
is open, i.e., it’s shape is not changing, the rows in the matrix W will cor-
respond to the same shape S̃OPEN . However, the closing of the fingers im-
plies a different shape of the object which cannot be represented as a rigid
motion change. Instead we will obtain a new shape matrix S̃CLOSE so that:

W =

[

M̃OPEN 0
0 M̃CLOSE

] [

S̃OPEN

S̃CLOSE

]

. Grouping the rows of W is expected

to group all the “OPEN” frames into one cluster and all the “CLOSE” frames
into a separate cluster.

Fig. 2 shows this on a real video sequence. It further illustrates the differ-
ence between spatial segmentation/grouping of points based on motion (column)
clustering, and temporal segmentation/grouping of frames based on shape (row)
clustering. The sequence shows a hand opening and closing the fingers repeat-
edly. Feature points on the moving fingers were tracked along the sequence using
the KLT tracker [10, 1] and used to construct the correspondence matrix W .
Factoring the rows of W (i.e., the columns of W T ) into two clusters resulted in
temporal shape-based segmentation of frames: It grouped together all the frames
with fingers stretched open into one cluster, and all the frames with fingers folded
into a second cluster (see Figs. 2.a,b,c). In contrast, applying the segmentation
to the columns of W resulted in spatial motion-based segmentation of points
into independently moving objects: It grouped into one cluster the points on
the fingers which moved mostly horizontally, and grouped into a second cluster
points on the thumb which moved mostly vertically, (see Fig. 2.d). The palm of
the hand was stationary and hence was ignored.

Fig. 3 displays another example of shape-based temporal segmentation. The
video clip was taken from the movie “Lord of the Rings - Fellowship of the Ring”,
and shows two hobbits first relaxed and then screaming. Feature points were
tracked along the sequence using the KLT tracker [10, 1] and used to construct
the correspondence matrix W . Grouping the rows of W (columns of W T ) into
two clusters detected the cut between the two expressions and grouped together
all the “calm” frames separately from the “screaming” frames.

3 Comparing Temporal and Spatial Factorization

In this section we explore the major similarities and differences between the
common motion based spatial factorization and our suggested approach to shape
based temporal factorization.
Data dimensionality: One of the major difficulties in the multi-body factor-

ization approach is the dimensionality of the data. As was shown by Weiss [18],
the method of Costeira & Kanade [6] to multi-body segmentation is equivalent
to applying spectral clustering to W T W , which is an N × N matrix (N being
the number of points). If the number of points is large, then this is a very large
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(a) (b) (c) (d) (e) (f)

Fig. 1. An illustration of a hand rotating and translating while opening and closing its
fingers. Frames (a),(b) and (c) capture the same shape (open hand) undergoing different
rigid motion transformations. The closing of the fingers between frames (c) and (d)
generates a new shape, independent of the previous one. The transformations between
frames (d),(e),(f) can again be viewed as the same shape (closed hand) undergoing rigid
motions.

matrix. Finding the eigenvectors of such a matrix (which is the heart of spectral
clustering) is therefore extremely time consuming. To obtain dense spatial factor-
ization of the entire image (e.g., [11]), the number of points N equals the number
of pixels in the image which can be extremely large (hundreds of thousands of
pixels).

However, this is not the case with temporal factorization. As explained in
Section 2, to obtain temporal factorization of W , we apply the same algorithms
suggested for spatial segmentation, but to W T . In other words, this is equivalent
to applying spectral clustering [18] to the matrix WW T (instead of W T W ). The
dimension of WW T is 2F × 2F , where F is the number of frames in the video
clip. Since F << N (F is usually only tens or hundreds of frames) , WW T is thus
a small matrix, and therefore the temporal factorization is not time consuming.
Furthermore, while dense spatial factorization requires dense flow estimation,
dense temporal factorization can be obtained even if only a sparse set of reliable
feature points are tracked over time. This is further explained next.

Tracking sparse points vs. dense optical flow estimation: Each column
of W contains the trajectory of a single point over time. The data in the matrix
W can be obtained either by tracking a sparse set of reliable points or by dense
optical flow estimation. Since the spatial “multi-body factorization” clusters the
columns of W , it will therefore classify only the points which have been tracked.
Thus, when only a small set of reliable points is tracked, the resulting spatial
segmentation of the image is sparse. Dense spatial segmentation of the image
domain requires dense optical flow estimation. This, however, is not the case
with temporal segmentation. Since our temporal factorization clusters the rows
of W , there is no need to obtain data for all the points in the sequence. A sparse
set of reliable points tracked through all the frames suffices for dense temporal
factorization. This is because the number of columns in W need not be large
in order to obtain good row clustering. Results of temporal factorization using
a small number of point tracks are shown in Figs. 2 and 3. In Fig. 4 we used
dense optical flow measurements to show validity of the approach to both ways
of obtaining data. Note, however, that even-though N (the number of points)
is large when using optical flow, the computational complexity of the temporal
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(a) Temporal factorization result:

(b) Example frame from (c) Example frame from (d) Spatial factorization
the “OPEN” cluster the “CLOSE” cluster result

Fig. 2. Temporal vs. spatial clustering. (a) Results of temporal factorization (on the
rows of W = the columns of W

T ) applied to a sequence showing a hand closing and
opening the fingers repeatedly. Setting the number of clusters to 2 resulted in group-
ing all frames with fingers open into one cluster (marked in blue on the time bar)
and all frames with fingers folded into a second cluster (marked in magenta on the
time bar). Ground truth values, obtained manually, are shown for comparison. (b),(c)
Example frames of the two temporal clusters. (d) Result of spatial factorization (on
the columns of W ) applied to the same sequence and the same tracked points. This
grouped together all the points on the fingers (marked in red), which move mostly hor-
izontally, and classified into a second cluster points on the thumb (marked in green)
which move mostly vertically. Note, that since only sparse feature points were tracked
along the sequence, the resulting spatial segmentation is highly sparse, whereas the
resulting temporal factorization is dense (i.e., all the frames in the video sequence
are classified) even though only a sparse set of points is used. Video can be found
at http://www.vision.caltech.edu/lihi/Demos/TemporalFactorization.html

factorization is still low, since the size of WW T is independent of N (it depends
only on the number of frames F ).

Segmentation of
[

X
Y

]

Vs. [X,Y ]: Let Wv =
[

X
Y

]

and Wh = [X,Y ] where
the subscript v stands for vertical stacking of X and Y whereas the subscript h

stands for horizontal stacking of X and Y . The common approaches to multi-
body factorization (e.g., [6, 7, 9]) selected carefully tracked feature points, con-
structed the Wv =

[

X
Y

]

matrix and clustered its columns. In this matrix each
point has a single corresponding column, and each frame has two corresponding
rows. Machline et al. [11] suggested applying multi-body factorization instead
to the columns of Wh = [X,Y ]. This allows to introduce directional uncertainty
into the segmentation process, and thus enables dense factorization using unre-
liable points as well (i.e., dense flow). In this matrix, (i.e., Wh) each point has
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two corresponding columns whereas each frame has a single corresponding row.
Thus, when clustering frames (rows) using temporal factorization it is simpler
to use the matrix Wh = [X,Y ]. Note, that when switching from Wv =

[

X
Y

]

to Wh = [X,Y ] the motion matrix completely changes its structure whereas
the shape matrix does not. Thus, in spatial multi-body factorization, which is
motion based, there is an inherent difference between the two approaches that
leads to a different spatial segmentation when using Wh = [X,Y ] vs. Wv =

[

X
Y

]

(see [11]). In contrast, the temporal factorization depends only on shape, thus
applying temporal clustering either to Wv =

[

X
Y

]

or to Wh = [X,Y ] will provide
the same results. For simplicity we used the Wh = [X,Y ] matrix for temporal
factorization and the Wv =

[

X
Y

]

matrix for spatial clustering of points.

Example: Fig. 4 shows an example of shape vs. motion segmentation using
dense optical flow estimation instead of sparse tracking data. The video clip
was taken from the movie “Brave Heart”, and shows the actor (Mel Gibson)
first serious and then smiling while moving his head. The frame-to-frame optical
flow was estimated using the robust optical flow estimation software of Michael
Black [2] which is described in [4, 3]. The frame-to-frame optical flow fields were
composed over time to obtain flow-fields of all frames in the video clip relative
to a single reference frame. These flow-fields were then organized in row vectors
and stacked to provide the matrix Wh = [X,Y ]. Applying spectral clustering
to the rows of Wh (i.e., applying factorization to the F × F matrix WhWT

h )
separated the frames into two clusters: one cluster containing all the “smile”
frames, and the other cluster containing all the “serious” frames (see Figs. 4.a,b).
For comparison, applying the same clustering algorithm to the columns of Wv

(i.e., applying multi-body factorization to the N ×N matrix W T
v Wv) separated

between regions with different motions (see Fig. 4.c).

Summary: For further clarification, we summarize in table 1 the observations
made in Sections 2 and 3. This provides a summary of the comparison between
spatial and temporal factorizations.

Spatial Factorization Temporal Factorization

Apply clustering to W
T
W WW

T

Data dimensionality N × N F × F

Data type Points (columns) Frames (rows)

Cluster by Consistent motions Consistent shapes

Sparse input Sparse spatial segmentation Dense temporal segmentation

Dense input Dense spatial segmentation Dense temporal segmentation

Table 1. Comparison summary of spatial factorization vs. temporal factorization
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(a) First temporal cluster (b) Second temporal cluster
(“calm” frames) (“screaming” frames)

Fig. 3. Temporal clustering of frames. Results of temporal factorization (into 2 clusters)
applied to a video clip taken from the movie “Lord of the Rings - Fellowship of the Ring”.
The clip shows two hobbits first calm and then screaming. The shape-based temporal
factorization detected the cut between the two expressions and grouped together all the
“calm” frames (some example frames are shown in column (a)) separately from all the
“scream” frames (some example frames are shown in column (b)). Video can be found
at http://www.vision.caltech.edu/lihi/Demos/TemporalFactorization.html

4 A New View on Previous Work

In this section we show that our way of formulating the temporal factorization
problem provides a unified framework for analyzing and comparing a number of
previously developed independent methods.

The most related work to ours is that of Rui & Anandan [15] who used
changes in the frame-to-frame optical flow field to segment activities into their
fragments. Rui & Anandan [15] estimated the optical flow field between each
pair of consecutive frames and stacked those into a matrix which is highly sim-
ilar to our Wh = [X,Y ] matrix only with displacements instead of positions.
They then applied SVD to the matrix, which provided the eigenflows spanning
the space of all flow-fields and the coefficients multiplying these basis flow-fields.
Temporal cuts were detected at sign changes of those coefficients. Their tech-
nique can be reformulated in terms of our temporal factorization approach. In
our factorization into motion and shape one can view the shape matrix S as
being the eigen-vectors spanning the row space and M being the coefficients
multiplying these eigen-vectors. Looking at their work this way shows that they
detect cuts at large changes in motion (e.g., shifting from clockwise rotation to
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counter-clockwise rotation), whereas we detect cuts at non-rigid shape changes
and ignore the motion of each shape. Furthermore, reformulating [15] in terms
of the temporal factorization approach allows extending it from simple temporal
segmentation (i.e., detecting cuts) to temporal clustering.

Rao & Shah [14] suggested a view-invariant recognition method for complex
hand movements. They first obtained hand trajectories (by tracking skin-colored
regions) which were sorted according to general structure. Trajectories of similar
structure were recognized as the same action by using a low-rank constraint on
a matrix constructed from the tracks coordinates. This constraint is equivalent
to the one we use for separating between shapes. We detect temporal cuts at
increases of the rank and cluster the rows into groups of low rank, i.e., we group
frames with the same (or similar) shape.

In a completely different context, Bregler et al. [5] obtained non-rigid object
tracking using a factorization/subspace based approach. Their work is not re-
lated to neither spatial segmentation nor temporal factorization. Nevertheless,
we found it appropriate to relate to their work since the shape matrix they used
in their decomposition bares similarity to our shape matrix in Eq. (3), which
can be misleading. There is a significant difference between their decomposition
and ours. They assumed that the shape in each frame is a linear combination of
all key-shapes whereas we associate a separate shape with each temporal cluster
of frames.

5 Conclusions

We have explored the properties of temporal factorization of the correspondence
matrix W and its duality to spatial factorization of the same matrix. We showed
that the temporal factorization provides a temporal segmentation and clustering
of frames according to non-rigid changes in shape. This approach is unique in the
sense that most existing temporal segmentation methods cut the video according
to changes in appearance or changes in motion (as opposed to changes in shape).

We showed that to obtain temporal clustering we need not develop any new
segmentation/clustering scheme but instead can utilize existing algorithms sug-
gested for spatial segmentation. We further showed that dense spatial segmen-
tation requires dense optical flow estimation whereas a small number of tracked
points suffices to obtain a dense temporal clustering of frames, i.e., a classifica-
tion of all the frames in the video clip. Furthermore, the dimensionality of the
data, which is one of the major difficulties in spatial multi-body factorization, is
significantly smaller for temporal segmentation.

The fact that the same factorization framework can be used for spatial seg-
mentation and for temporal segmentation opens new possibilities that may lead
to a combined approach for simultaneous spatio-temporal factorization.
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(a) First detected (b) Second detected (c) Spatial clustering result
temporal cluster temporal cluster from spatial
(“smiling” frames) (“serious” frames) multi-body factorization

Fig. 4. Temporal vs. spatial clustering using dense optical flow. Results of factor-
ization applied to a sequence taken from the movie “Brave Heart”. The actor (Mel
Gibson) is serious at first and then smiles while moving his head independently from
his expression throughout the sequence. Optical flow was estimated relative to the first
frame and the clustering was applied directly to it. We set the number of clusters to 2
for temporal factorization and to 3 for spatial factorization. (a) Sample frames from
the first detected temporal cluster, all of which show the actor smiling. (b) Sample
frames from the second detected temporal cluster which show the actor serious. (c)
Since optical flow was used, we could obtain dense spatial segmentation. This sep-
arated between the forehead, the mouth region and a dangling group of hair. These
correspond to three independent motions in the sequence: Along the sequence the actor
raises his eyebrows and wrinkles his forehead. Independently of that the mouth region
deforms when the actor smiles. The group of hair dingles as the head moves, again
independently from the other two motions (the motion of the hair at the lower left
part of the image can be seen in the frames in (a) and (b)). Video can be found at
http://www.vision.caltech.edu/lihi/Demos/TemporalFactorization.html


