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Abstract

The traditional subspace-based approaches to segmentation (often referred to as multi-body fac-

torization approaches) provide spatial clustering/segmentation by grouping together points moving

with consistent motions. We are exploring a dual approach to factorization, i.e., obtaining tem-

poral clustering/segmentation by grouping together frames capturing consistent shapes. Temporal

cuts are thus detected at non-rigid changes in the shape of the scene/object. In addition it provides

a clustering of frames with consistent shape (but not necessarily same motion). For example, in a

sequence showing a face which appears serious at some frames, and is smiling in other frames, all

the “serious expression” frames will be grouped together and separated from all the “smile” frames

which will be classified as a second group, even though the head may meanwhile undergo various

random motions.

1 Introduction

The traditional subspace-based approaches to multi-body segmentation (e.g., [6, 7, 9]) provide

spatial clustering/segmentation by grouping points moving with consistent motions. This is done

by grouping columns of the correspondence matrix of [17] (we review the definition in Section 1.1).
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In this work we show that to obtain temporal grouping of frames we cluster the rows of the same

correspondence matrix instead of its columns. We show that this provides grouping of frames

capturing consistent shapes, but not necessarily same motion. We further show that, to obtain such

shape-based clustering of frames we need not develop any new segmentation/clustering scheme.

We can use any of the existing algorithms suggested for clustering points (e.g., [6, 7, 9]), but,

instead of applying them to the correspondence matrix as is, we apply them to its transpose.

Note, that spatial “multi-body factorization” [6, 7, 9] usually provides a highly sparse segmen-

tation since commonly the number of points which can be tracked reliably along the sequence is

low. Dense spatial segmentation requires dense optical flow estimation (e.g., [11]). In contrast,

a small number of tracked points suffices to obtain a dense temporal clustering of frames, i.e.,

a classification of all the frames in the video clip. Furthermore, the dimensionality of the data,

which is one of the major difficulties in spatial multi-body factorization, is significantly smaller

for temporal segmentation. To obtain dense spatial factorization of the entire image (e.g., [11]),

the number of points equals the number of pixels in the image, which can be extremely large

(hundreds of thousands of pixels). This is not the case with temporal factorization. The number

of frames in the video clip is usually only tens or hundreds of frames, and therefore the temporal

factorization is not time consuming.

The standard approaches to temporal segmentation cut the video sequence into “scenes” or

“shots”, mainly by drastic changes in image appearance (e.g., [22, 16, 12]). Other approaches

are behavior based (e.g., [21, 15]) and segment the video into sub-sequences capturing different

events or actions. The approach suggested here is fundamentally different and provides a temporal

segmentation and clustering of frames which is based on non-rigid changes in shape. For example,

in a sequence showing a face at some frames serious and in other frames smiling, all the “serious

expression” frames will be grouped together and separated from all the “smile” frames which will

be classified as a second group, even though the head may meanwhile undergo various random

2



motions.

Our way of formulating the problem provides a unified framework for analyzing and comparing

a number of previously developed independent methods. This new view of previous work is

described in Section 6. For example, we show that the technique of Rui & Anandan [15] can be

reformulated in terms of the factorization approach. Our analysis illustrates that their approach

will detect cuts at large changes in motion, whereas we detect cuts at non-rigid shape changes.

In a different work, Rao & Shah [14] suggested a view-invariant recognition method for complex

hand movements. In Section 6 we show that the similarity constraint they use for matching shapes

is equivalent to the one we use for separating between shapes.

We start by defining notation and reviewing the background to the multi-body factorization

approach in Section 1.1. In Section 2 we present our approach to shape based temporal factoriza-

tion and in Section 3 we discuss its physical meaning. This is extended in Section 4 to the case

of multiple sequences. Section 5 explores the similarities and differences between the suggested

approach and the standard spatial factorization of motion. Lastly, we review some related work

in Section 6 and summarize in Section 7.

1.1 Background on Factorization Methods

Let I1, . . . , IF denote a sequence of F frames with N points tracked along the sequence. Let

(xf
i , y

f
i ) denote the coordinates of pixel (xi, yi) in frame If (i = 1, . . . , N , f = 1, . . . , F ). Let X

and Y denote two F ×N matrices constructed from the image coordinates of all the points across

all frames:

X =




x1
1 x1

2 · · · x1
N

x2
1 x2

2 · · · x2
N

...
xF

1 xF
2 · · · xF

N




Y =




y1
1 y1

2 · · · y1
N

y2
1 y2

2 · · · y2
N

...
yF

1 yF
2 · · · yF

N




(1)
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Each row in these matrices corresponds to a single frame, and each column corresponds to a single

point. Stacking the matrices X and Y of Eq. (1) vertically results in a 2F × N “correspondence

matrix” W =
[

X
Y

]
. It has been previously shown that under various camera and scene models

[17, 8, 5] the correspondence matrix W of a single object can be factorized into motion and shape

matrices: W = MS (where M and S are low dimensional). When the scene contains multiple

objects (see [6, 7]) we still obtain a factorization into motion and shape matrices W = MS, where

M is a matrix containing the motions of all objects and S is a block-diagonal matrix containing

the shape information of all objects.

2 Temporal Factorization

The traditional subspace-based approaches to multi-body segmentation (e.g., [6, 7, 9]) provide

spatial clustering of image points by grouping columns of the correspondence matrix W = MS.

Note, that in the correspondence matrix W every column corresponds to a point and every row

corresponds to a frame. Thus, to obtain temporal clustering of frames we will apply clustering

to the rows of W instead of its columns. In this section we present the theory behind temporal

clustering of frames and suggest methods for obtaining it.

When factoring the correspondence matrix W into motion and shape, the columns of the

motion matrix M span the columns of W and the rows of the shape matrix S span the rows of

W . Hence, clustering the columns of W into independent linear subspaces will group together

points which share the same motion. Equivalently, clustering the rows of the correspondence

matrix W will group frames which share the same shape. Luckily, to obtain such row-based

segmentation/clustering we need not develop any new segmentation/clustering scheme. We can

use any of the existing algorithms suggested for segmenting/clustering columns (e.g., [6, 7, 9]),

but, instead of applying them to W , we will apply them to W T . We next show why this is true.

When the scene contains multiple (K) objects moving with independent motions, and the
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columns of W are sorted according to objects, then as was shown in [6] the resulting shape matrix

has a block diagonal structure:

W = [W1, . . . ,WK ] = [M1, . . . ,MK ]




S1 0
. . .

0 SK


 (2)

where Wi = MiSi is the correspondence matrix of the i-th object, with motion Mi and shape Si.

The correct permutation and grouping of columns of W into W1, . . . ,WK to obtain the desired

separation into independently moving objects was accordingly recovered [6, 7] by seeking a block-

diagonal structure for the shape matrix S. In other words, to obtain spatial segmentation of

points one can group the columns of W into independent linear subspaces by assuming that W

can be factored into a product of two matrices, where the matrix on the right has a block diagonal

form.

Now, taking the dual approach: When the sequence includes non-rigid shape changes (Q in-

dependent shapes) and the rows of W are sorted according to shape, then the resulting motion

matrix has a block diagonal structure:

W =




W̃1
...

W̃Q


 =




M̃1 0
. . .

0 M̃Q







S̃1
...

S̃Q


 (3)

The permutation and grouping of rows of W into W̃1, . . . , W̃Q to obtain the desired separation

into frames capturing independent shapes can therefore be obtained by seeking a block-diagonal

structure for the motion matrix M . Temporal factorization, thus, provides a way to classify

video frames according to non-rigid motion (which is captured by changes in shape), while being

invariant to the rigid motions of both objects and camera.
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Note, however, that if we now take the transpose of W we get:

W T = [W̃ T
1 , . . . , W̃ T

Q ] = [S̃T
1 , . . . , S̃T

Q]




M̃T
1 0

. . .

0 M̃T
Q


 (4)

That is, the matrix W T can be factored into a product of two matrices where the matrix on

the right is block diagonal. This is equivalent to the assumption made in the factorization of

W to obtain column clustering. Thus, we can use any of the algorithms suggested for segment-

ing/clustering columns (e.g., [6, 7, 9]), however, instead of applying them to W we will apply

them to W T .

The common approaches to multi-body factorization segmented the columns of the correspon-

dence matrix W =
[

X
Y

]
. In this matrix there is a single column corresponding to each point and

two rows corresponding to each frame. It has been previously shown [8, 18, 11] that the horizon-

tally stacked matrix Wh = [X,Y ] can also be factorized into motion and shape matrices, albeit

with different ranks. This implies that the temporal factorization of Eq. (3) holds for the matrix

Wh as well. In the matrix Wh = [X,Y ] there are two columns corresponding to each point and a

single row corresponding to each frame, which makes it simpler to use in temporal factorization.

Thus, we will henceforth use the matrix W =
[

X
Y

]
for spatial multi-body factorization and the

matrix Wh = [X,Y ] for temporal factorization.

Our approach to subspace-based temporal clustering/factorization can therefore be summarized

as follows:
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(a) (b) (c)

(d) 0 5 10 15 20 25 30
Frame
Number

Result

Ground
Truth

SMILE SAD TWISTED

Figure 1. Classifying Synthetic Facial Expressions. Temporal factorization applied to a 30 frame
long synthetic sequence showing a smiley face in three different expressions, while translating
and rotating rigidly. (a) Shows frame 1 in which the smiley face is smiling, (b) shows frame
15 in which it is sad and (c) shows frame 30 which displays a “twisted” expression. (d)
Temporal factorization result (on the rows of Wh). Setting the number of clusters to 3 resulted
in grouping all frames with a smile expression into one cluster (marked in blue on the time
bar), all frames with a sad expression into a second cluster (marked in red on the time bar),
and all frames with a twisted expression into a third cluster (marked in green on the time
bar). Ground truth values are shown for comparison.

Given a video clip of a dynamic scene:

1. Track reliable feature points along the entire sequence.

2. Place each trajectory into two column vectors (one for the horizontal and one for
the vertical component) and construct the correspondence matrix Wh = [X,Y ]
(see Eq. (1)).

3. Apply any of the existing algorithms for column clustering (e.g., “multi-body fac-
torization” of [6, 7, 9]), but to the matrix W T

h (instead of W ).

3 Physical Meaning of Temporal Factorization

In the following we analyze the properties and characteristics of temporal factorization. For the

sake of simplicity we start in Section 3.1 by analyzing the case of a single object. This analysis is

extended to the multiple object scenario in Section 3.2.

3.1 The Single Object Case

The temporal factorization scheme suggested above will classify video frames into groups cor-

responding to independent shapes. When we say “independent shapes” we refer to independence
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between rows of different shape matrices (and not between columns/points). Independence be-

tween rows of two shape matrices occurs when at least part of the columns in those matrices are

different. Recall, that the matrix S corresponding to a rigid set of points is a 4×N matrix where

each column holds the homogeneous coordinates [X,Y, Z, 1]T of a 3D point. Rigid shape changes

can be viewed as the same set of points undergoing a rigid motion, and therefore still have the

same shape. On the other hand, non-rigid shape changes imply that some of the points move dif-

ferently than others, i.e., some of the columns of the shape matrix change differently than others.

This will lead to a new shape matrix, which is linearly independent of the previous one, and thus

to assigning these frames to separate temporal clusters. Note, that every 4 × N shape matrix

has a row of 1’s there is always partial linear dependence between shape matrices. To overcome

that, we can use the Tomasi-Kanade [17] approach for removing the translational component by

centering the centroid of the tracked points. Then the row of 1’s is eliminated from the shape

matrix, and we obtain full linear independence. Alternatively, some of the previously suggested

approaches for sub-space segmentation can handle partial dependencies [19]. In particular, we

used the spectral clustering approach suggested in [13].

To illustrate the characteristics of temporal factorization, we present in Fig. 1 results of our algo-

rithm applied to a synthetic sequence showing a smiley face in three different expressions “SMILE”,

“SAD” and “TWISTED”, while rotating and translating. As long as the face is smiling, i.e., it’s

shape is not changing, the rows in the matrix Wh will correspond to the same shape S̃SMILE. How-

ever, the change in expression into a sad or a twisted one implies a different shape of the object

which cannot be represented as a rigid motion change. Instead we will obtain new shape matrices

S̃SAD and S̃TWISTED so that: Wh =




M̃SMILE 0 0
0 M̃SAD 0
0 0 M̃TWISTED







S̃SMILE

S̃SAD

S̃TWISTED


. Clustering

the rows of Wh grouped all the “SMILE” frames, the “SAD” frames and the “TWISTED” frames,
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into separate clusters (see Figure 1.d), being invariant to the rigid motion of the smiley face.

Fig. 2 shows this on a real video sequence. It further illustrates the difference between spatial

segmentation/grouping of points based on motion (column) clustering, and temporal segmenta-

tion/grouping of frames based on shape (row) clustering. The sequence shows a hand opening

and closing the fingers repeatedly. Feature points on the moving fingers were tracked along the

sequence using the KLT tracker [10, 1] and used to construct the correspondence matrix Wh (this

was used in all our experiments which required tracking). Factoring the rows of Wh (i.e., the

columns of W T
h ) into two clusters resulted in temporal shape-based segmentation of frames: It

grouped together all the frames with fingers stretched open into one cluster, and all the frames

with fingers folded into a second cluster (see Figs. 2.a,b,c). In contrast, applying the segmentation

to the columns of W resulted in spatial motion-based segmentation of points into independently

moving objects: It grouped into one cluster the points on the fingers which moved mostly hori-

zontally, and grouped into a second cluster points on the thumb which moved mostly vertically,

(see Fig. 2.d). The palm of the hand was stationary and hence was ignored.

3.2 The Multiple Objects Case

So far our analysis focused on the single object case. Note, however, that to obtain temporal

factorization our only assumption was that the tracked points can lie in a finite number of config-

urations/shapes and the transformation between these shapes is non-rigid. Thus, when the scene

contains multiple objects, we can still obtain temporal factorization if this assumption holds. This

is done by viewing the whole scene as a single complex object. The temporal factorization of Equa-

tion (3) still holds but the motion and shape matrices, corresponding to the q’th subset of frames

will take a more complex form: W̃q = M̃qS̃q where M̃q =
[
M̃q1, . . . , M̃qK

]
, S̃q =




S̃q1 0
. . .

0 S̃qK




and K is the number of objects. Temporal cuts will be detected at non-rigid shape changes of
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(a) Temporal factorization result:

(b) Example frame from (c) Example frame from (d) Spatial factorization
the “OPEN” cluster the “CLOSE” cluster result

Figure 2. Temporal vs. spatial clustering. (a) Results of temporal factorization (on the rows
of Wh) applied to a sequence showing a hand closing and opening the fingers repeatedly.
Setting the number of clusters to 2 resulted in grouping all frames with fingers open into
one cluster (marked in blue on the time bar) and all frames with fingers folded into a sec-
ond cluster (marked in magenta on the time bar). Ground truth values, obtained manu-
ally, are shown for comparison. (b),(c) Example frames of the two temporal clusters. (d)
Result of spatial factorization (on the columns of W ) applied to the same sequence and
the same tracked points. This grouped together all the points on the fingers (marked in
red), which move mostly horizontally, and classified into a second cluster points on the
thumb (marked in green) which move mostly vertically. Note, that since only sparse feature
points were tracked along the sequence, the resulting spatial segmentation is highly sparse,
whereas the resulting temporal factorization is dense (i.e., all the frames in the video se-
quence are classified) even though only a sparse set of points is used. Video can be found at
http://www.vision.caltech.edu/lihi/Demos/TemporalFactorization.html

either of the objects, or at non-rigid changes in the scene organization.

This is illustrated in Fig. 3. The video clip was taken from the movie “Lord of the Rings -

Fellowship of the Ring”, and shows two hobbits first relaxed and then screaming, while moving

their heads. In this case, even-though the scene includes two objects, their non-rigid shape changes

are synchronized (i.e., they both change their expression and start screaming at the same time).

Note, however, that the rigid head motions of the two hobbits are different and not synchronized.

The hobbit on the right rotated his head whereas the hobbit on the left did not (see, for example,
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(a) First temporal cluster (b) Second temporal cluster
(“calm” frames) (“screaming” frames)

Figure 3. Multiple Objects. Results of temporal factorization (into 2 clusters) applied
to a video clip taken from the movie “Lord of the Rings - Fellowship of the Ring”.
The clip shows two hobbits first calm and then screaming. The shape-based temporal
factorization detected the cut between the two expressions and grouped together all the
“calm” frames (some example frames are shown in column (a)) separately from all the
“scream” frames (some example frames are shown in column (b)). Video can be found at
http://www.vision.caltech.edu/lihi/Demos/TemporalFactorization.html

Fig. 3.a top and bottom figures). In addition to that, the camera was moving and zooming

independently. Nevertheless grouping the rows of Wh into two clusters detected the cut between

the two expressions and grouped together all the “calm” frames separately from the “screaming”

frames. This is since temporal factorization recognizes non-rigid motions while being invariant to

rigid motions.

An additional example of temporal factorization in the multiple-objects case is presented in

Figure 4. The video sequence shows a woman and a man exercising independently of each other.
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The woman bends left and right whereas the man rocks in a forward-backward motion. The

woman’s motion is non-rigid and can be viewed as a traversal between 3 different poses (i.e.,

configurations/shapes): “up”, “left” and “right”. The man’s motion, on the other hand, can be

represented as a rigid motion (actually, in the video the man moved his arm non-rigidly but the

tracking provided points only on his body thus the captured motion was rigid). Applying our

temporal factorization algorithm to points tracked along the sequence resulted, as expected, in a

segmentation according to the woman’s poses.

Another scenario in which the above assumption holds is when the scene contains multiple rigid

objects moving together with the same motion (i.e., rigidly with respect to each other) but every

once in a while only one object changes its position with respect to the other objects. In this case

the temporal factorization will detect the non-rigid changes in the scene, although the individual

objects do not change their shapes and each moves with a rigid motion. An example of such a

case is presented in Figure 5.

4 Shape Based Classification Across Sequences

As was shown in the previous sections, the suggested temporal factorization scheme classifies

video frames according to shape. So far we have used that for temporal segmentation and clus-

tering of frames within a single video sequence. In this section we show how this approach can be

extended to shape-based classification across sequences. In particular we are interested in pose

and expression recognition.

The temporal factorization scheme relies on pre-computation of the correspondence matrix Wh.

In this matrix each column corresponds to a single point and each row corresponds to a single

frame. Given multiple sequences we can stack vertically their corresponding matrices Wh, as if

all the frames of all the sequences were taken consecutively by the same camera. The temporal

factorization of Eq. (3) holds for this combined matrix as long as the points tracked in all the
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(a) (b) (c)

Segmentation according to woman alone:

(d)

Segmentation according to both man and woman:

(e)

Figure 4. Multiple objects. Temporal factorization applied to a 376 frame long sequence showing
two people exercising. The woman on the left moves non-rigidly: she either stands up-right
as shown in (a), bends left as shown in (b) or bends to the right as shown in (c). The
man on the right moves almost rigidly in a forward-backward motion. (d) Result of temporal
factorization applied only to points tracked on the woman. This grouped frames according to
the woman’s three poses. (e) Applying the same algorithm to points tracked on both the man
and the woman provided almost the same result as that obtained when using only the woman’s
data. This is since she is the only one performing non-rigid motions.

sequences are the same points and their corresponding matrix columns are ordered in the same

order. When the sequences display different people, this is unlikely to occur. That is, different

points will be tracked in different sequences (e.g., the tip of the nose can be tracked in one sequence

and not in the other) and their ordering in the corresponding matrix Wh will be arbitrary.

In many cases, however, some of the tracked points correspond to the same features (e.g., the

eyes) and thus can be matched as “the same points” across sequences. To select and match only

those points which are mutual to all the sequences, we add a preliminary semi-automatic matching

step, illustrated in Figure 6. Note, that a single frame from each sequence is sufficient to match the
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(a) (b) (c) (d)

(e) 0 10 20 30 40 50
Frame
Number

Result

Ground
Truth

Config1 Config2 Config3 Config4

Figure 5. Multiple rigid objects. Temporal factorization applied to a 50 frame long synthetic
sequence showing three rigid objects. The objects move with the same translation and rotation,
but appear in 4 different configurations, shown in (a)-(d), which correspond to frames 10, 20,
30 and 40 of the sequence. (e) Applying our temporal factorization algorithm detected the
non-rigid changes in the scene and resulted in grouping of frames according to configurations.

points across sequences. The matching process thus proceeds as follows. First points are tracked

independently in each sequence. We select a pose appearing in all the sequences and pick a single

representative frame from each sequence corresponding to the selected pose (see Figs. 6.a,b). We

further select four body/face features tracked in all the sequences, and manually mark those in

each representative frame. For example, in Fig. 6 we marked the eyes and the hips in Fig. 6.a and

Fig. 6.b. The selected points are used to estimate a projective transformation which aligns the

representative frames. The computed transformation is applied to all the points, thus aligning the

representative frames, and only the “mutual points” (i.e., those whose positions across sequences

overlap) are kept (see Fig. 6.d). The aligning transformation is then applied to the complete

trajectories of the mutual points, which are then used to construct the matrix Wh.

To summarize, given a set of video sequences of different people performing the same activi-

ties/expressions we track points in each of the sequences and select only those which were tracked

in all of them. The matrix Wh is then constructed by concatenating the tracking results of all

the sequences (e.g., given two sequences each 50 frame long the combined matrix Wh will have

100 rows). Applying the temporal factorization algorithm to the combined matrix provides a
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(a) (b) (c) (d)

Figure 6. Finding mutual points across sequences. (a) The representative frame from one se-
quence with tracked points marked in yellow. (b) The representative frame from a second
sequence with tracked points marked in green. (c) Overlay of the tracked points of both se-
quences on frame (a). (d) After alignment and keeping only mutual points.

shape-based classification of frames, rather than a temporal segmentation.

Figure 7 displays results of such pose-based recognition. The input included two sequences,

each showing a different woman traversing through a similar set of body poses, but in a different

order and with different durations. The shape-based classification described above successfully

recognized body poses, independently of the acting person.

Our facial expression recognition experiments were not all that successful. In our experiments

we found that some people have such different faces that the classification recognized them as

different expressions. Still, in some cases we were able to obtain satisfying results. This is

illustrated in Figure 8. Shape based classification was applied to two video sequences displaying

two different people in smiling, angry or idle expressions. Setting the number of clusters to 3

provided poor results (see Figure 8.c). On the other hand, applying the same algorithm, to the

same set of points, while setting the number of clusters to 4 resulted in high-quality expression

based classification (see Figure 8.d). The detected four expressions were “idle”, “smiling”, “angry”

of first person and “angry” of the other person. This implies that the angry expressions of the two

people were too different to be classified as the same one. Thus, setting the number of clusters to 3

mixed the different expressions, whereas setting the number of clusters to 4 successfully separated

between them.
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First Sequence Second Sequence

(a) (b)

(c)

Figure 7. Pose Recognition. Shape-based clustering applied to two sequences, each showing a
different person exercising. The first sequence (clipped off the sequence of Figure 4) shows
a woman traversing between three poses: “up”, “left” and “right”. Corresponding sample
frames from the first sequence are shown in (a). The second sequence shows a different
woman shifting between the “up” and “right” poses. Corresponding sample frames from the
second sequence are shown in (b). (c) Shows the result of shape-based clustering applied to all
frames of both sequences simultaneously. The clustering grouped frames correctly according
to the three different body poses, although performed by different people. See Section 4 for
further details.

5 Comparing Temporal and Spatial Factorization

In this section we explore the major similarities and differences between the common motion

based spatial factorization and our suggested approach to shape based temporal factorization.

Data dimensionality: One of the major difficulties in the multi-body factorization approach

is the dimensionality of the data. As was shown by Weiss [20], the method of Costeira & Kanade

[6] to multi-body segmentation is equivalent to applying spectral clustering to W T W , which is

an N × N matrix (N being the number of points). If the number of points is large, then this

is a very large matrix. Finding the eigenvectors of such a matrix (which is the heart of spectral

clustering) is therefore extremely time consuming. To obtain dense spatial factorization of the

entire image (e.g., [11]), the number of points N equals the number of pixels in the image which

can be extremely large (hundreds of thousands of pixels).

However, this is not the case with temporal factorization. As explained in Section 2, to obtain
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First Sequence

(a)
Second Sequence

(b)
Clustering into 3 clusters:

(c)
Clustering into 4 clusters:

(d)

Figure 8. Facial Expression Recognition. Shape-based clustering applied to two sequences, each
showing a different person in three different facial expressions: “idle”, “smile” and “angry”.
Three sample frames from each sequence, corresponding to these three expressions, are dis-
played in (a) and (b). (c) Shows the result of shape-based clustering applied to all frames of
both sequences simultaneously, while setting the number of clusters to 3. A wrong clustering
is obtained. (d) Shows high-quality result obtained when setting the number of clusters to
4. This separated between “idle”, “smile”, “angry” of first person and “angry” of the sec-
ond person. This explains the bad result when forcing 3 clusters. The “angry” expressions
of the two people are too different and thus can not be grouped together, implying that the
correct number of clusters to be used here is 4. When setting the number of clusters to 3,
the clustering mixed frames corresponding to different expressions. See Section 4 for further
details.
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temporal factorization of Wh, we apply the same algorithms suggested for spatial segmentation,

but to W T
h . In other words, this is equivalent to applying spectral clustering [20] to the matrix

WhW
T
h (instead of W T

h Wh). The dimension of WhW
T
h is F ×F , where F is the number of frames

in the video clip. Since F << N (F is usually only tens or hundreds of frames) , WhW
T
h is thus a

small matrix, and therefore the temporal factorization is not time consuming. Furthermore, while

dense spatial factorization requires dense flow estimation, dense temporal factorization can be

obtained even if only a sparse set of reliable feature points are tracked over time. This is further

explained next.

Tracking sparse points vs. dense optical flow estimation: Each column of W contains the

trajectory of a single point over time. The data in the matrix W can be obtained either by tracking

a sparse set of reliable points or by dense optical flow estimation. Since the spatial “multi-body

factorization” clusters the columns of W , it will therefore classify only the points which have

been tracked. Thus, when only a small set of reliable points is tracked, the resulting spatial

segmentation of the image is sparse. Dense spatial segmentation of the image domain requires

dense optical flow estimation. This, however, is not the case with temporal segmentation. Since

our temporal factorization clusters the rows of Wh, there is no need to obtain data for all the

points in the sequence. A sparse set of reliable points tracked through all the frames suffices for

dense temporal factorization. This is because the number of columns in Wh need not be large in

order to obtain good row clustering. Results of temporal factorization using a small number of

point tracks are shown in Figs. 2 and 3. In Fig. 9 we used dense optical flow measurements to

show validity of the approach to both ways of obtaining data. Note, however, that even-though

N (the number of points) is large when using optical flow, the computational complexity of the

temporal factorization is still low, since the size of WhW
T
h is independent of N (it depends only

on the number of frames F ).

Segmentation of W =
[

X
Y

]
Vs. Wh = [X,Y ]: Recall that W =

[
X
Y

]
and Wh = [X,Y ] where the
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subscript h stands for horizontal stacking of X and Y . The common approaches to multi-body

factorization (e.g., [6, 7, 9]) selected carefully tracked feature points, constructed the W =
[

X
Y

]

matrix and clustered its columns. Machline et al. [11] suggested applying multi-body factorization

instead to the columns of Wh = [X,Y ]. This allows to introduce directional uncertainty into the

segmentation process, and thus enables dense factorization using unreliable points as well (i.e.,

dense flow). As noted before, in this matrix, (i.e., Wh) each point has two corresponding columns

whereas each frame has a single corresponding row. Thus, when clustering frames (rows) using

temporal factorization it is simpler to use the matrix Wh = [X,Y ]. Note, that when switching

from W =
[

X
Y

]
to Wh = [X,Y ] the motion matrix completely changes its structure whereas the

shape matrix does not. Thus, in spatial multi-body factorization, which is motion based, there is

an inherent difference between the two approaches that leads to a different spatial segmentation

when using Wh = [X,Y ] vs. W =
[

X
Y

]
(see [11]). In contrast, the temporal factorization depends

only on shape, thus applying temporal clustering either to W =
[

X
Y

]
or to Wh = [X,Y ] will provide

the same results. For simplicity we used the Wh = [X,Y ] matrix for temporal factorization and

the W =
[

X
Y

]
matrix for spatial clustering of points, in all our experiments.

Example: Fig. 9 shows an example of shape vs. motion segmentation using dense optical flow

estimation instead of sparse tracking data. The video clip was taken from the movie “Brave Heart”,

and shows the actor (Mel Gibson) first serious and then smiling while moving his head. The frame-

to-frame optical flow was estimated using the robust optical flow estimation software of Michael

Black [2] which is described in [4, 3]. The frame-to-frame optical flow fields were composed over

time to obtain flow-fields of all frames in the video clip relative to a single reference frame. These

flow-fields were then organized in row vectors and stacked to provide the matrix Wh = [X,Y ].

Applying spectral clustering to the rows of Wh (i.e., applying factorization to the F × F matrix
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WhW
T
h ) separated the frames into two clusters: one cluster containing all the “smile” frames, and

the other cluster containing all the “serious” frames (see Figs. 9.a,b). For comparison, applying

the same clustering algorithm to the columns of W (i.e., applying multi-body factorization to the

N × N matrix W T W ) separated between regions with different motions (see Fig. 9.c).

Summary: For further clarification, we summarize in table 1 the observations made in Sections 2

and 5. This provides a summary of the comparison between spatial and temporal factorizations.

Spatial Factorization Temporal Factorization

Apply clustering to W T W WW T

Data dimensionality N × N F × F
Data type Points (columns) Frames (rows)
Cluster by Consistent motions Consistent shapes
Sparse input Sparse spatial segmentation Dense temporal segmentation
Dense input Dense spatial segmentation Dense temporal segmentation

Table 1. Comparison summary of spatial factorization vs. temporal factorization

6 A New View on Previous Work

In this section we show that our way of formulating the temporal factorization problem provides

a unified framework for analyzing and comparing a number of previously developed independent

methods.

The most related work to ours is that of Rui & Anandan [15] who used changes in the frame-to-

frame optical flow field to segment activities into their fragments. Rui & Anandan [15] estimated

the optical flow field between each pair of consecutive frames and stacked those into a matrix

which is highly similar to our Wh = [X,Y ] matrix only with displacements instead of positions.

They then applied SVD to the matrix, which provided the eigenflows spanning the space of all

flow-fields and the coefficients multiplying these basis flow-fields. Temporal cuts were detected at

sign changes of those coefficients. Their technique can be reformulated in terms of our temporal

factorization approach. In our factorization into motion and shape one can view the shape matrix

S as being the eigen-vectors spanning the row space and M being the coefficients multiplying
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(a) First detected (b) Second detected (c) Spatial clustering result
temporal cluster temporal cluster from spatial

(“smiling” frames) (“serious” frames) multi-body factorization

Figure 9. Temporal vs. spatial clustering using dense optical flow. Results of factorization ap-
plied to a sequence taken from the movie “Brave Heart”. The actor (Mel Gibson) is serious
at first and then smiles while moving his head independently from his expression throughout
the sequence. Optical flow was estimated relative to the first frame and the clustering was
applied directly to it. We set the number of clusters to 2 for temporal factorization and to
3 for spatial factorization. (a) Sample frames from the first detected temporal cluster, all
of which show the actor smiling. (b) Sample frames from the second detected temporal clus-
ter which show the actor serious. (c) Since optical flow was used, we could obtain dense
spatial segmentation. This separated between the forehead, the mouth region and a dan-
gling group of hair. These correspond to three independent motions in the sequence: Along
the sequence the actor raises his eyebrows and wrinkles his forehead. Independently of that
the mouth region deforms when the actor smiles. The group of hair dangles as the head
moves, again independently from the other two motions (the motion of the hair at the lower
left part of the image can be seen in the frames in (a) and (b)). Video can be found at
http://www.vision.caltech.edu/lihi/Demos/TemporalFactorization.html
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these eigen-vectors. Looking at their work this way shows that they detect cuts at large changes

in motion (e.g., shifting from clockwise rotation to counter-clockwise rotation), whereas we detect

cuts at non-rigid shape changes and ignore the motion of each shape. Furthermore, reformulating

[15] in terms of the temporal factorization approach allows extending it from simple temporal

segmentation (i.e., detecting cuts) to temporal clustering.

Rao & Shah [14] suggested a view-invariant recognition method for complex hand movements.

They first obtained hand trajectories (by tracking skin-colored regions) which were sorted accord-

ing to general structure. Trajectories of similar structure were recognized as the same action by

using a low-rank constraint on a matrix constructed from the tracks coordinates. This constraint

is equivalent to the one we use for separating between shapes. We detect temporal cuts at in-

creases of the rank and cluster the rows into groups of low rank, i.e., we group frames with the

same (or similar) shape.

In a completely different context, Bregler et al. [5] obtained non-rigid object tracking using a

factorization/subspace based approach. Their work is not related to neither spatial segmentation

nor temporal factorization. Nevertheless, we found it appropriate to relate to their work since the

shape matrix they used in their decomposition bares similarity to our shape matrix in Eq. (3),

which can be misleading. There is a significant difference between their decomposition and ours.

They assumed that the shape in each frame is a linear combination of all key-shapes whereas we

associate a separate shape with each temporal cluster of frames.

7 Conclusions

This paper explored the properties of temporal factorization of the correspondence matrix W

and its duality to spatial factorization of the same matrix. It has been shown that temporal

factorization provides a temporal segmentation and clustering of frames according to non-rigid

changes in shape, for single object, multiple objects and even across sequences. This approach is
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unique in the sense that most existing temporal segmentation methods cut the video according

to changes in appearance or changes in motion (as opposed to changes in shape).

To obtain such temporal clustering one need not develop any new segmentation/clustering

scheme but instead can utilize existing algorithms suggested for spatial segmentation. It was

further shown that dense spatial segmentation requires dense optical flow estimation whereas a

small number of tracked points suffices to obtain a dense temporal clustering of frames, i.e., a

classification of all the frames in the video clip. Furthermore, the dimensionality of the data,

which is one of the major difficulties in spatial multi-body factorization, is significantly smaller

for temporal segmentation.

The fact that the same factorization framework can be used for spatial segmentation and for

temporal segmentation opens new possibilities that may lead to a combined approach for simul-

taneous spatio-temporal factorization.
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