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Abstract

Real-world action recognition applications require the development of systems which are fast, can handle a

large variety of actions without a priori knowledge of the type of actions, need a minimal number of parameters

and necessitate as short as possible learning stage. In this paper we suggest such an approach. We regard dynamic

activities as long-term temporal objects, which are characterized by spatio-temporal features at multiple temporal

scales. Based on this, we design a simple statistical distance measure between video sequences which captures the

similarities in their behavioral content. This measure is non-parametric and can thus handle a wide range of complex

dynamic actions. Having a behavior-based distance measure between sequences, we use it for a variety of tasks,

including: video indexing, temporal segmentation and action-based video clustering. These tasks are performed

without prior knowledge of the types of actions, their models, or their temporal extents.

Index Terms

Action recognition, video indexing, temporal segmentation.

I. INTRODUCTION

DYNAMIC activities can form a powerful cue for analysis of video information, including action-based

video indexing, browsing, clustering, and segmentation. Previous work [23], [2], [11], [15], [14],

[9], [17], [12], [20] has primarily focused on the recognition of sets of predefined actions, or assumed

restricted imaging environments. For example, Ju et al. model and recognize articulated motions [11],

Black and Yacoob treat facial expressions [2], and the approaches of Polana and Nelson [17], Cutler

and Davis [6], Liu and Picard [12] and of Saisan et al. [20] are designed to detect periodic activities.

These methods propose elegant approaches for capturing the important characteristics of these actions by

specialized parametric models which usually give rise to high-quality recognition of the studied actions.
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Their construction, however, is usually done via an extensive learning phase, where many examples of

each studied action are provided (often manually segmented and/or manually aligned).

Real-world applications, however, are unlikely to be restricted to recognition of pre-studied carefully

modeled actions. When dealing with general video data often there is no prior knowledge about the

types of actions in the video sequence, their temporal and spatial extent, or their nature (periodic/non-

periodic). A desired application might be for the user who is viewing a movie (e.g., a sports movie),

to point out an interesting video segment which contains an action of interest (e.g., a short clip which

shows a tennis serve), and request the “system” to fast-forward to the next clip (or find all clips) where a

“similar” action occurs. We refer to this as “action-based video indexing”, or “Intelligent Fast-Forward”.

Another desired application is behavior-based temporal segmentation of long video sequences. Given a

long video sequence containing a variety of actions one would like to detect the start-end points of the

actions, without requiring any a-priori knowledge of the types of actions or their temporal extents. Such

applications require developing a notion of behavior-based similarity between video clips which is based

on a less-specialized (but also less restrictive) approach to activity modeling.

In this paper we develop such an approach. We design a similarity measure between video sequences

which is based on behavior alone. That is, it preserves the temporal variations, while being insensitive

to appearance changes such as varying clothing, lighting conditions, etc. This measure is non-parametric

and can thus handle a wide range of dynamic behaviors. It may not be optimal for one specific action,

but allows for general behavior-based analysis of video information containing unknown action types. To

show the strength of the suggested approach we present results on a large variety of actions types.

A preliminary version of this paper appeared in CVPR’01 [24].

II. RELATED WORK

Approaches for modeling actions in non-parametric ways have been previously suggested (e.g., [17],

[22], [20], [1], [5], [8]). Most of these were limited to recognition of periodic activities or dynamic textures

[17], [22], [20], [1], however, some did aim at recognizing structured activities. Chomat & Crowley [5],

represented actions by distributions of motion features at multiple spatial scales. Our measurements, on

the other hand, are performed at multiple temporal scales. We therefore capture temporal textures as
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opposed to “moving spatial textures” which are captured by [5]. In a more recent work Efros et al. [8]

suggested a non-parametric approach to action recognition, based on comparing templates of dense optical

flow-fields. This comparison is possible when the figure in the video is in coarse resolution (e.g., a few

tens of pixels tall). When these conditions hold, the approach of [8] provides very good action recognition

results. However, it can not handle cases where the actors have different sizes, shapes, or are of different

phases of the same motion.

Two highly related lines of work are that using Motion History Images (MHI) [3] and the work of

Niyogi and Adelson [15], [14]. Both rely on finding the silhouette in each image and characterizing

the action by the properties of the stacked silhouettes. The MHI work [3], [4] generated a 2D template

image for each action by overlaying weighted silhouettes, while Niyogi and Adelson [15], [14] tried to

characterize the shape of the XYT volume generated by the stacked set of silhouettes. The MHI approach

relies on template matching and thus can detect occurrences of a previously learned action, however, it

cannot be used for action based temporal segmentation and clustering where the actions in the video are

not known a-priori. Both approaches are limited to actions which can be characterized by their silhouettes

and cannot handle temporal textures such as flowing water.

III. WHAT IS AN ACTION?

Actions are long-term temporal objects, which usually extend over tens or hundreds of frames. Polana

and Nelson [17] separated the class of temporal objects into three groups and suggested separate approaches

for modeling and recognizing each: (i) temporal textures which have indefinite spatial and temporal extent

(e.g., flowing water), see [16] , (ii) activities which are temporally periodic but spatially restricted (e.g.,

a person walking), see [17], and (iii) motion events which are isolated actions that do not repeat either in

space or in time (e.g., smiling). In this paper we refer to temporal actions/behaviors as all of the above,

and would like to treat all of them within a single framework. Nevertheless, most of our experiments

focused on the latter two as we find those more interesting.

We next make a set of observations that will affect the design of our action modeling scheme. First,

we observe that a representation which can handle the three types of actions/behaviors has to be general,

i.e., it cannot make any hard assumptions such as stationarity (which is common in modeling temporal
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(a) (b) (c)

Fig. 1. Representation: The temporal
derivative of a walk action at high (a)
and low (b) temporal resolutions. (c) The
space-time volume S corresponding to a
left-to-right walk. The space-time gradient
(Sx, Sy, St) = ( ∂S

∂x
, ∂S

∂y
, ∂S

∂t
) is estimated

at each space-time point (x, y, t).

textures) or periodicity (which is common in modeling repetitive activities). Second, a behavior based

representation has to rely on motion-based features which are invariant to changes in appearance such as

those caused by different clothes, changes in lighting conditions, variations in background, etc. Last, we

note, that actions are characterized by multiple temporal scales. For example, in a sequence of a walking

person, the high temporal resolutions will capture the motion of the limbs, whereas the low temporal

resolutions will mostly capture the gross movement of the entire body (see Figure 1.a,b).

One should note, that although actions are captured at multiple temporal scales, a specific action is

always performed at approximately the same speed and thus captured at the same temporal scales. For

example, a single step of a walking person, viewed by two different video cameras of the same frame

rate, will extend over the same number of frames in both sequences, regardless of the internal or external

camera parameters. Similarly, a single step of two different people will extend roughly across the same

number of frames. This observation implies that when comparing two actions one need not perform

comparisons across temporal scales, but rather it suffices to compare actions at corresponding temporal

scales. This facilitates the design of a sequence-to-sequence similarity measure.

A scenario which does not comply to the above assumption is when the same action is performed at

significantly different speeds. In this case comparing corresponding temporal scales might be in-sufficient

to detect the similarity between the actions. Note, however, that in this case it is not straight-forward

to say whether indeed the two videos should be considered as capturing the same action or not. For

example, are jogging and sprinting the same action? Is a slow dance equivalent to a fast one? If, for the

application at hand, the answer is yes, then one would extend the proposed approach to handle those cases

by comparing measurements across temporal scales as well.
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IV. ACTION REPRESENTATION AND DISTANCE MEASURE

Based on the above observations, local space-time measurements at multiple temporal scales of the video

sequence are taken as samples of a stochastic temporal process (the action), and are used to construct

an empirical distribution associated with this action. Two actions are considered similar if they could

have been generated by the same stochastic process, i.e., if their empirical distributions at corresponding

temporal scales are similar. This is explained next.

For obtaining measurements at multiple temporal scales we first construct a temporal pyramid of the

entire video sequence by blurring and sub-sampling the sequence along the temporal direction only. The

temporal pyramid of a sequence S is thus a pyramid of sequences S1(= S), S2, . . . , SL, where the image

frames in all the levels (sequences) within the pyramid are of the same size, and each sequence S l has

half the number of frames of the higher resolution sequence S l−1.

For each level (sequence) S l in the temporal pyramid, we estimate the local space-time intensity gradient

(Sl
x, S

l
y, S

l
t) at all space-time points (See Figure 1). We then ignore all space-time points for which the

temporal derivative is below some threshold, thus using information only from spatio-temporal points

which participate in the action. This step can be regarded as a very rough spatial segmentation when the

sequence shows a person performing against a static background. For videos displaying temporal textures,

such as flowing water, or when the camera is moving, changes occur in most of the space-time points

and thus this step has little effect if at all.

The gradient is normal to the local spatio-temporal surface generated by the motion in the space-

time sequence volume1 (at temporal resolution l). Thus, the gradient direction captures the local surface

orientation, which depends mostly on the local behavioral properties of the moving object, while its

magnitude depends primarily on the local photometric properties of the moving object and is affected by

its spatial appearance (e.g., contrast, color, texture of clothes, illumination, etc.). To preserve the behavioral

(orientation) information alone and eliminate as much of the photometric component as possible (the

magnitude), we normalize the spatio-temporal intensity gradients to be of length 1. To be invariant to
1This can be seen from the linear expansion of the brightness constancy equation: Let (dx, dy, dt) denote the local translation of the

space-time point (x, y, t). Assuming local brightness constancy yields S(x, y, t) = S(x + dx, y + dy, t + dt). First order Taylor Expansion
provides (Sx, Sy, St) · (dx, dy, dt)T = 0, i.e., the space-time gradient is orthogonal to the local space-time displacement.
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negated contrasts between foreground and background (e.g., a person wearing dark/light clothes against a

light/dark background) and to the direction of action (e.g., right-to-left or left-to-right), we further take the

absolute value of the normalized space-time gradients. Our local space-time measurements are therefore:

(N l
x, N

l
y, N

l
t) =

(|Sl
x|, |S

l
y|, |S

l
t|)

√

(Sl
x)

2 + (Sl
y)

2 + (Sl
t)2

(1)

where l = 1, . . . , L and usually L = 3 or 4.

Our action representation would ideally be the 3L-dimensional distribution of the set of measurements

associated with each space-time point across all temporal scales. For example, when using 3 temporal

scales (L = 3) each space-time point is associated with a 9-dimensional vector:

[N1
x , N1

y , N1
t , N2

x , N2
y , N2

t , N3
x , N3

y , N3
t ]. To enforce simultaneous occurrence of space-time measurements

at multiple temporal scales we would like to construct a multi-dimensional (9D) distribution over the

set of all vectors. However, multi-dimensional histograms (e.g., [21]), are computationally intensive and

memory-consuming (e.g., for L = 3, and assuming 256 bins for each histogram dimension, the size of

the multi-dimensional histogram is 2569).

To handle this curse-of-dimensionality we suggest a simplified representation, obtained by assuming that

all the components of a spatio-temporal point are independent of each other. Taking this assumption we

associate with each action a set of 3L 1-dimensional empirical distributions {pl
k}, one for each component

of the space-time measurements (k = x, y, t) at each temporal scale (l = 1, . . . , L). The empirical

distribution pl
k of measurements N l

k is represented by a discrete smoothed histogram hl
k whose integral is

normalized to 1. For example, when using 3 temporal scales an action is represented by a set of 9 one-

dimensional histograms: {h1
x, h

1
y, h

1
t , h

2
x, h

2
y, h

2
t , h

3
x, h

3
y, h

3
t}. We then require the simultaneous occurrence of

distributions of space-time measurements at multiple temporal scales. The “behavioral” distance between

two sequences (S1 and S2) is measured by the distances between corresponding empirical distributions

of all the components of the space-time measurements at all temporal scales using χ2 divergence2, which
2We have experimented with various distance measures, such as Jensen-Shannon and Intersection, and all provided similar results. We

have selected the χ2 as it extends naturally to multi-dimensional histograms
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Fig. 2. Distributions of Space-Time Measure-
ments: 663 video clips, each 64 frame long, where
taken out of the video sequence of Fig. 3, showing
different people walking, running, waving and
rolling. The plots above show for each action the
mean distribution of each space-time component
in two scales.

are added to obtain a single (squared) distance measure between the two sequences:

D2 = 1
3L

∑

k,l,i
[hl

1k
(i)−hl

2k
(i)]

2

hl
1k

(i)+hl
2k

(i)

k ∈ {x, y, t}
l = 1, . . . , L
i = 1, . . . , number of bins

(2)

Clearly, the strong independence assumption taken above is wrong as the components N l
k of each spatio-

temporal point are dependent by construction. By ignoring this dependence we implicitly make a new

assumption: that the set of one-dimensional empirical distributions suffices to capture the differences

between actions. One cannot prove when this claim holds. Instead we examine the quality of this

representation empirically by testing on a variety of action types as described in the next few sections.

To provide a better intuition on what can be captured by the suggested action representation Figure 2

shows the mean empirical distributions (histograms) computed over multiple video clips of 4 different

actions. Some actions differ in all of the components, e.g., waving and rolling, while others differ only in

some components, e.g., walking and running. As will be shown in the following sections, these differences

were enough to separate between these actions.

Since our representation is based on distributions it will be the same for sequences displaying the same

action, even when they are of different frame size or when they display a different number of repetitions

of the action.

V. APPLICATIONS

A. Action-Based Indexing (Detection)

Given a single example clip of an action of interest and a long test sequence, we wish to detect actions

similar to the example action, having no prior information on the content of the test video. This is achieved
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by comparing the action-of-interest against all sub-sequences of the long video, with the same temporal

length as the example clip (similar to the action detection in [6]). Sub-sequences with small distance to

the given example clip are detected as representing the same action. When an action repeats multiple

times consecutive sub-sequences will be detected as the same action, thus the final detection results can

include video segments of various lengths.

B. Action-Based Temporal Segmentation

To temporally segment a streaming video we compare every sub-sequence of length T to its consecutive

sub-sequence of length T using the distance measure of Eq. (2). This results in a set of distance values

where maxima points correspond to start-end points of actions. The number of frames T should be loosely

related to the length of a single repetition of an action in the sequence.

C. Action-Based Clustering

The temporal segmentation scheme described above can be applied on-line as video streams in. However,

when the entire video sequence is available (e.g., in a batch mode) and when the sequence contains multiple

occurrences of actions (e.g., the same actions performed at different times), then our action-based distance

measure can further be used for grouping actions into action-consistent clusters. We compare every sub-

sequence of length T against all other sub-sequences of length T within the long video sequence to

construct a distance matrix. We then use the normalized cut approach of [18] to cluster the data (The

number of clusters is determined by the user).

VI. EXPERIMENTS AND RESULTS

To evaluate the quality of the suggested approach we have performed a series of experiments on four

video sequences including a variety of action types. The actual videos can be found at:

http://www.wisdom.weizmann.ac.il/∼vision/EventDetection.html

• Periodic activities - “Walk” sequence: Figure 3 shows results on a video sequence of several-

minutes long (approx. 6000 frames). The video was recorded outdoors by a stationary video camera.

It contains four types of frequently occurring periodic activities: walking, running, hand-waving, and
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(a) (b) (c)

(d) (e) (f)
“Walk” Detection

(g)
Action-Based Clustering

(h)
Fig. 3. Periodic activities: (a)-(f) Representative frames of the “Walk” sequence. (g) The measured distances (using Eq. (2)) between a
single example clip showing a person walking and a sliding window shifted across the entire sequence. The blue bars mark ground-truth for
walks. (h) Results of action-based clustering. Top row: All sub-sequences corresponding to the same cluster were assigned the same color.
Bottom row: manually marked ground-truth information.

walking-in-place (performed by different people of both genders wearing different clothes for different

lengths of time), and single occurrences of several other activities (e.g., rolling, and other free activities).

Most of the activities were performed parallel to the image plane, but several parts include walking in

slightly diagonal directions and some on snake-like paths. Waving includes waving with a single hand or

both hands (not necessarily having the same phase). Figure 3 shows the high-quality results obtained for

action-based indexing and clustering using T = 64.

• Non-periodic activities - “Punch-Kick-Duck” sequence: Figure 4 shows results on a video

displaying both multiple repetitions and single occurrences of three actions: punch, kick and duck.

• Isolated non-periodic activities - “Tennis” sequence: Figure 5 shows the result of applying action-

based clustering to a 500-frame long tennis sequence recorded with a panning camera. The sequence was

first stabilized to compensate for the camera-induced background motion using [10]. A sliding window

of size T = 10 was applied to the stabilized sequence. The three detected clusters correspond to strokes

(backhand and fore-hand), hops, and steps of the tennis player. Since our normalized local measurements

are invariant to mirror reflections of the same action, the backhand and fore-hand strokes are clustered

together into a single “strokes” class. In this sequence the strokes appeared with no consecutive repetitions
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(a) (b) (c)
“Punch” Detection

(d)
Temporal Segmentation and Clustering

(e)
Fig. 4. Non-Periodic actions: (a)-(c) Sample frames from the “punch-kick-duck” sequence. (d) The measured distances between a single
punch clip and all other sub-sequences. The blue bars mark ground-truth for punches. (e) Results of temporal segmentation and clustering
using a temporal windows of length T = 32 frames. For temporal segmentation the detected cuts are marked by black vertical lines on top
of the ground-truth values.

Fig. 5. Isolated non-periodic actions: Representative frames and clustering result of the “Tennis” sequence.

showing the capability of our approach to handle isolated non-periodic actions.

• Temporal textures - “Water” sequence: Figure 6 further displays the robustness of our approach

to classification of temporal textures. The sequence is composed of a mixture of 11 video clips showing

water flowing in four different types of motion. The transitions between consecutive clips is an additive

fade-in/fade-out effect. Our clustering scheme separated the sequence into the four types of motion.

VII. EVALUATING ROBUSTNESS

We next evaluate the robustness of the suggested action recognition scheme by analyzing its invariance

with respect to various parameters.

Invariance to Spatial and Temporal Translations: The spatial position of an object in the image plane

has no effect on the local space-time gradients thus our distance measure is invariant to translations in the
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Fig. 6. Temporal textures: Representative frames and clustering result of the “Water” sequence.

image plane. The suggested representation and distance measure are also invariant to temporal translations.

Namely, two actions will be recognized as the same even if they are not temporally synchronized (i.e., if

they are out of phase) since the statistics are collected over the entire space-time volume of a clip.

Varying Spatial Scales: Variations in spatial size due to moderate changes in zoom or in distance of

the acting person from the video camera have only a little affect on the gradient orientations, and thus can

be handled by our approach. On the other hand, large changes in zoom or in the distance from the camera

may change the observed spatial features and therefore will affect the gradient orientations. To overcome

this problem, one can extend the suggested approach by constructing for each action a representation at

multiple spatial scales.

Appearance Changes: Changes in appearance inflicted by different clothing or background will be

handled nicely by the suggested approach, as the results show. This invariance will break when extreme

changes are involved, for example, when one person wears a highly textured shirt and single color pants

while the other wears a single color shirt and highly textured pants. This is since there will be very little

gradient information in the single color body part. To overcome this we first blur the sequences thus

textured clothes are smeared into single color. We also noted that in most cases clothes are not perfectly

homogeneous thus sufficient gradient information can be obtained.

Varying Temporal Scales: As discussed in Section III, we assume that different instances of the same

action occur at similar speeds. Nevertheless, our approach proved empirically to be robust to moderate

changes in speed. For example, in the “punch-kick-duck” sequence of Figure 4 the extent of a single

repetition of an action varied between 25 and 40 frames. Nevertheless, we were able to correctly classify

all of them. We have also tested this on a sequence showing a person walking (at 5,6 and 7 kmh) and
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running (at 8 and 9 kmh) on a treadmill (results are not included due to lack of space). Although the

difference in speed between the fastest walk and the slowest run was the same as between the two runs,

or two walks, an accurate separation between walking and running was obtained.

Changes in Viewing Direction: Significant changes in viewing direction will induce different image

motions, and thus different gradients. Although in theory our distance measure should not be view-point

invariant, we have empirically found it to be rather robust to it. This can be seen, for example, in the

results obtained for the sequences of Figures 3 and 4 where some of the activities were performed at

various angles. An evaluation of robustness to view-point changes was additionally performed 3 on a

video sequence showing different people walking at various angles with respect to the camera. Applying

the clustering process to this sequence while setting the number of clusters to 2 separated between front

view (i.e., walking toward the camera) and side view, although the side view included a high variability

in angles (between 30 and 90 degrees to the camera optical axis).

Robustness to Length of Temporal Window: The applications of Section V require setting a user-

defined length T . We investigated the robustness to variations in T on the “punch-kick-duck” sequence.

Using T = 32 high quality results were obtained although the length of a single repetition of an action

in this sequence varies between 25 and 40 frames. When using T = 16, high quality clustering results

were still obtained, however, when applying temporal segmentation some false temporal cuts were also

detected. In most cases, these occurred at the short pauses between repeated occurrences of the same

action. A very small temporal window of length T = 8 captures too little information about the action,

hence, some of the correct cuts were missed, while other false cuts were detected, both when clustering

and when segmenting.

Robustness to Changes in Number of Clusters: In the clustering process we have one extra parameter:

the number of clusters. We tested robustness to the choice of the number of clusters on the “punch-kick-

duck” sequence. When the number of clusters is set to 2 (instead of the correct number 3) all “punches”

and all “kicks” are grouped together into one cluster and the second cluster corresponds to all the “ducks”.

This result is intuitive, since the “punches” and “kicks” are far more similar to each other than to the
3Results are not included due to lack of space.
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“ducks”. Setting the number of clusters to the wrong number 4 resulted in separating the “punches” into

two clusters. One contained all the clips in which the punching person stood frontal to the camera, and

the other clips with a small angle between the person and the camera.

VIII. REFINING THE REPRESENTATION AND MEASURE

When only a single example clip of an action is available, the action representation is constructed from

it. When multiple example clips of the same action are available (either specified manually, or obtained

via the automatic clustering process), we can refine the action representation to emphasize the contribution

of important space-time measurements at the important temporal scales, as learned from the examples.

We first rewrite the χ2 distance measure using vector notation: χ2 = (h2 − h1)
T [diag(h2 + h1)]

−1 (h2 − h1)

where diag(h2 + h1) is a diagonal matrix whose i-th diagonal entry is h2(i) + h1(i) and can be viewed

as a weight assigned to the i’th histogram bin.

When multiple example clips of the same action type A are available, we compute the mean and

covariance of all the corresponding distributions. The mean histogram hA can be used as the action rep-

resentation, and the covariances covA indicate the reliability and the relative significance of the individual

histogram bins. When estimating the distance measure between the action A (represented by hA) and any

new incoming sequence with an empirical distribution h, the weights of bins should be replaced with

covA
−1. This way, high weights are assigned to bins of low variance (which are more reliable) and low

weights to bins of high variance (which are less reliable). The refined distance measure specialized for

detecting actions similar to A is therefore: D2
A =

(

h − hA

)T
covA

−1
(

h − hA

)

This is actually the squared

Mahalanobis distance [7], applied here to distributions (histograms).

IX. CONCLUSIONS

The task of action recognition in video is an extremely difficult one. Many approaches thus focus on

recognizing a highly limited set of actions, often just a single one like walking. However, real systems

will have to extend the variety and number of action types they can handle. In this paper we presented an

approach which aims to go in that direction. By representing actions in a non-parametric way we were
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able to utilize a single framework to recognize periodic and non-periodic activities, isolated occurrences

and multiple-repetitions, as well as handling both “structured” video (e.g., showing people) and dynamic

textures (e.g., flowing water). While this provides a “proof-of-concept” that a single system can handle

such a wide variety of cases, better methods still need to be developed to allow for further invariance to

changes in viewing direction, appearance, distance to the camera, etc.
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